Answer:its y
Explanation:its going down with the most force, the end of the hill is the fastest if that makes sense
KE = 0
<h3>Further explanation </h3>
Energy is the ability to do work
Energy because its motion is expressed as Kinetic energy (KE) which can be formulated as:

So for two objects that have the same speed, the greater the mass of the object, the greater the kinetic energy
The stone in hand is in a motionless state (at rest) so that its velocity (v) = 0, so it has no kinetic energy
But this stone can have <em>potential energy that is gained due to its height</em>
<span>Answer: 17.8 cm
</span>
<span>Explanation:
</span>
<span>1) Since temperature is constant, you use Boyle's law:
</span>
<span>PV = constant => P₁V₁ = P₂V₂
</span><span>=> V₁/V₂ = P₂/P₁</span>
<span>
2) Since the ballon is spherical:
</span><span>V = (4/3)π(r)³</span>
<span>
Therefore, V₁/V₂ = (r₁)³ / (r₂)³
</span>
<span>3) Replacing in the equation V₁/V₂ = P₂/P₁:
</span><span><span>(r₁)³ / (r₂)³ </span>= P₂/P₁</span>
<span>
And you can solve for r₂: (r₂)³ = (P₁/P₂) x (r₁)³
</span>(r₂)³ = (1.0 atm / 0.87 atm) x (17 cm)³ = 5,647.13 cm³
<span>
r₂ = 17.8 cm</span>
You need to have more information, please list the
"following".
Thanks
Answer:
specific heat = 0.951 j/g·°C
Explanation:
Heat flow equation => q = m·c·ΔT
q = heat flow = 4817 joules
m = mass in grams = 140 grams Aluminum
c = specific heat = ?
ΔT = Temperature Change in °C = 98.4°C - 62.2°C = 36.2°C
q = m·c·ΔT => c = q/m·ΔT = 4817j/(140g)(36.2°C) = 0.951 j/g·°C