This question can be simply solved by using heat formula,
Q = mCΔT
Q = heat energy (J)
m = Mass (kg)
C = Specific heat capacity (J / kg K)
ΔT = Temperature change (K)
when water freezes, it produces ice at 0°C (273 K)
hence the temperature change is 25 K (298 K - 273 K)
C for water is 4186 J / kg K or 4.186 J / g K
By applying the equation,
Q = 456 g x 4.186 J / g K x 25 K
= 47720.4 J
= 47.72 kJ
hence 47.72 kJ of heat energy should be removed.
The part of an atom that is actively exchanged or shared in a chemical bond is ELECTRON.
An atom is made up of three sub particles, which are electron, proton and neutron. The proton and the neutron are located in the nucleus of the atom and they make up the major mass of the atom. The electron is located outside of the nucleus and it orbit around the nucleus; it has negligible mass. The electron is negatively charged and because it is located outside of the nucleus, it is the one that is always involved in chemical reactions. There are different types of chemical bonds in chemical compounds and it is electrons that are normally used to form these bonds. During bond formation, electrons can either be donated or shared.
Answer:
Mixtures
Explanation:
Matter can be classified as a compound and a mixture.
Answer:
Root mean squared velocity is different.
Explanation:
Hello!
In this case, since we have a mixture of oxygen and nitrogen at STP, which is defined as a condition whereas T = 298 K and P = 1 atm, we can infer that these gases have the same temperature, pressure, volume and moles but a different root mean squared velocity according to the following formula:

Since they both have a different molar mass (MM), nitrogen (28.02 g/mol) and oxygen (32.02 g/mol), thus we infer that nitrogen would have a higher root mean squared velocity as its molar mass is less than that of oxygen.
Best regards!