Answer:
Noble gas Electronic configuration of arsenic:
As₃₃ = [Ar] 3d¹⁰ 4s² 4p³
Explanation:
Arsenic is metalloid.
Its atomic number is 33.
Its atomic mass is 75 amu.
Its symbol is As.
It is usually present in combine with sulfur and metals.
it is used in bronzing.
It is also used for hardening.
Electronic configuration:
As₃₃ = Is² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p³
Noble gas Electronic configuration:
As₃₃ = [Ar] 3d¹⁰ 4s² 4p³
Noble gas electronic configuration is shortest electronic configuration by using the noble gas elements full octet electronic configuration.
Answer:
The 3R rule states that Radial cracks form a Right angle on the Reverse side of the force. This rule enables an examiner to determine readily the side on which a window or pane of glass was broken.
I hope it's helpful!
False
Although we use many of their ideas to describe atoms today, such as the existence of a tiny, dense nucleus in an atom (proposed by Rutherford), or the notion that all atoms of an element are identical (proposed by Dalton), some of their ideas have been rejected by the modern theory of the atom.
For example, Thompson came up with the plum pudding model to describe an atom, which resembled a sphere of positive charge with electrons embedded in it. We know now, however, that atoms are mostly empty space with a tiny, dense nucleus.
Another example is Dalton's atomic theory, which stated that atoms are indivisible particles. However, this was disproved by the discovery of subatomic particles.
Sodium Chloride is a compound.
Answer:
0.7457 g is the mass of the helium gas.
Explanation:
Given:
Pressure = 3.04 atm
Temperature = 25.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (25.0 + 273.15) K = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
3.04 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K
<u>⇒n = 0.1863 moles</u>
Molar mass of helium = 4.0026 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>0.7457 g is the mass of the helium gas. </u>