V(cylinder)=πR²H
Radius of the cylinder R=x, height of the cylinder H=y.
We can write for the cylinder
V(cylinder)=πx²y
V(cone) =(1/3)πr²h
Radius of the cone r=2x.
We can write for the cone
V(cone)= (1/3)π(2x)²h=(1/3)π *4*x²h
V(cylinder) =V(cone)
πx²y=(1/3)π *4*x²h
y=(4/3)*h
h=(3/4)*y
Answer:
.
Step-by-step explanation:
Answer:
if I remember correctly it would be a triangle.
Answer:.OA. -4
Step-by-step explanation:
Answer:
x= 37.5°
Step-by-step explanation:
∠CBD
= 180° -75° (adj. ∠s on a str. line)
= 105°
∠BCD= ∠BDC (base ∠s of isos. △BCD)
∠BCD= x
∠BCD +∠BDC +∠CBD= 180° (∠ sum of △BCD)
x +x +105°= 180°
2x= 180° -105°
2x= 75°
x= 37.5°
<u>Alternative</u><u> </u><u>working</u><u>:</u>
∠BDA= (180° -75°) ÷2 (base ∠s of isos. △ABD)
∠BDA= 52.5°
∠BDA +∠BDC= 90°
52.5° +x= 90°
x= 90° -52.5°
x= 37.5°