Answer:
a. Final velocity, V = 2.179 m/s.
b. Final velocity, V = 7.071 m/s.
Explanation:
<u>Given the following data;</u>
Acceleration = 0.500m/s²
a. To find the velocity of the boat after it has traveled 4.75 m
Since it started from rest, initial velocity is equal to 0m/s.
Now, we would use the third equation of motion to find the final velocity.
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
- S represents the displacement measured in meters.
Substituting into the equation, we have;


Taking the square root, we have;

<em>Final velocity, V = 2.179 m/s.</em>
b. To find the velocity if the boat has traveled 50 m.


Taking the square root, we have;

<em>Final velocity, V = 7.071 m/s.</em>
Average velocity over a given time interval is the distance traveled divided by the time:
Answer:
Option B, visual sightings
Explanation:
Options for the question are
A) accountability mechanism
B) visual sightings
C) intelligence
D) surveillance
E) reconnaissance operations, or communications
Solutions
The Fundamentals of Army Personnel Recovery (PR) outlines certain circumstances under which a person has to undergo survival situation thereby taking the necessary steps to avoid capture and return safely to their respective unit.
An isolated soldier is expected to know where they are, upcoming route and rally points. They are supposed to know the near and far recognition signals, recovery site protocols, challenge and password etc. A proper preparation is to be done for this including planning, medicines, kits, etc.
Visual sightings is not an essential part of isolated PR
Hence, option B is correct
Answer:
b) 20 kJ
Explanation:
Efficiency of carnot engine = (T₁ - T₂ ) / T₁ Where T₁ is temperature of hot source and T₂ is temperature of sink .
T₁ = 270 + 273 = 543K
T₂ = 50 + 273 = 323 K
Putting the given values of temperatures
efficiency = (543 - 323) / 543
= .405
heat input = 50 KJ
efficiency = output work / input heat energy
.405 = output work / 50
output work = 20.25 KJ.
= 20 KJ .
Carbon-14 is naturally created with the interaction of high-energy cosmic rays with atmospheric nitrogen. As part of the atmosphere, living organisms take in the carbon and incorporate this into living tissues. As long as the organism is alive and breathing, it keeps adding new carbon-14. When the organism dies, it stops gaining carbon-14 - or anything else, of course.
Carbon-14 is slightly radioactive, with a half-life of about 5700 years. If we assume that the atmospheric production of carbon-14 has been steady for the last 100,000 years, we can calculate the approximate age of when the organism died by determining what percentage of carbon-14 still exists in the dead material.
Paleo-archaeologists and anthropologists use this information when studying old cultures and civilizations.