'A' is correct. B, C, and D are false statements.
Answer:
v= 0.2 m/s
Explanation:
Given that
m₁ = 50 kg
m₂ = 100 g = 0.1 kg
u =10 0 m/s
If there is no any external force on the system then the total linear momentum of the system will be conserve.
Initial linear momentum = Final momentum
m₁u₁ + m₂ u₂ =m₂ v₂ +m₁v₁
50 x 0 + 0.1 x 100 = 50 v + 0
0+ 10 = 50 v

v= 0.2 m/s
Therefore the recoil speed will be 0.2 m/s.
Answer:
a) v2=4147.72 m/s
b) stotal=5.53x10^6 m
Explanation:
a) the length from the center of the earth is equal to:
L1=1x10^6+((6.37/2)x10^6)=4.18x10^6 m
the velocity is 5.14 km/s=5.14x10^3 m/s
the farthest distance is equal to:
L2=2x10^6+((6.37/2)x10^6)=5.18x10^6 m
As the angular momentum is conserved, we have to:
I1=I2
m*L1*v1=m*L2*V2, where m is the mass of satelite
clearing v2:
v2=(L1*V1)/L2=(4.18x10^6*5.14x10^3)/5.18x10^6=4147.72 m/s
b) Using the Newton 3rd law:
vf^2=vi^2+2as
where:
a=g=9.8 m/s^2
vf=0
vi=5.14 km/s
s=?
Clearing s:
s=(vf^2-vi^2)/(2g)=((0-(5.14x10^3)^2)/(2*9.8)=1.35x10^6 m
the total distance is equal to:
stotal=s+L1=1.35x10^6+4.18x10^6=5.53x10^6 m
Answer:
clockwise direction
Explanation:
Direction of induced current is found with the help of Lenz's law . According to this law , the direction of induced current is such that it tries to neutralize or oppose the reason which creates this current .
In the given case , magnetic field is towards the viewer of the screen and it is increasing , so the induced current will have to create magnetic field in opposite to it . It means magnetic field will be created towards the screen into it . So the current will be induced in clockwise direction . This current will create magnetic field into the screen which will oppose increasing magnetic field out of screen .