Answer:
Q = 5267J
Explanation:
Specific heat capacity of copper (S) = 0.377 J/g·°C.
Q = MSΔT
ΔT = T2 - T1
ΔT=49.8 - 22.3 = 27.5C
Q = change in energy = ?
M = mass of substance =508g
Q = (508g) * (0.377 J/g·°C) * (27.5C)
Q= 5266.69J
Approximately, Q = 5267J
Answer:
55.96kJ
Explanation:
Energy = mass of diethyl ether × enthalpy of vaporization of diethyl ether
Volume (v) = 200mL, density (d) = 0.7138g/mL
Mass = d × v = 0.7138 × 200 = 142.76g
Enthalpy of vaporization of diethyl ether = 29kJ/mol
MW of diethyl ether (C2H5)2O = 74g/mol
Enthalpy in kJ/g = 29kJ/mol ÷ 74g/mol = 0.392kJ/g
Energy = 142.76g × 0.392kJ/g = 55.96kJ
Answer:
k = 104.46 N/m
Explanation:
Here we can use energy conservation
so we will have
initial gravitational potential energy = final total spring potential energy
as we know that she falls a total distance of 31 m
while the unstretched length of the string is 12 m
so the extension in the string is given as


so we have



Answer:
d.100 meters
Explanation:
The diameter of the Milky Way Galaxy is approximately 100,000 light years.
Here we are using 1 millimiter (1 mm) to represent 1 light-year (1 ly). So, we can set the following proportion:

and by finding x, we find the diameter of the Milky Way Galaxy in the scale used:

so the correct answer is
d. 100 meters
Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ