Answer:
Normal, Gravity, Friction, and Air Resistance.
Explanation:
When a moving car skid to stop and its wheels are locked across, then the following forces will be applied on the car:
<u>Normal force:</u> It will act counter to gravity that pushes an object against a surface and acts perpendicular to the contact surface.
<u>Gravity:</u> Gravity force acts in each and every object having mass and it can not be avoidable. So, the gravity force will also apply to the car and attract it to the earth's surface.
<u>Friction: </u>Friction is a force that acts opposite to the motion and stops or slows motion. Friction will be applied to the car that will oppose the motion of the car and stop it.
<u>Air resistance:</u> air resistance is defined as the forces exerted by air that acts opposite to the relative motion of an object. Air resistance will also be applied to the car when it will skid to stop as we are always surrounded by the air.
Hence, the correct answers are "Normal, Gravity, Friction, and Air Resistance."
Answer:
i have no clue i just need brailnly points
Explanation:
The gravitational force on the car is
(9.8 m/s^2) x (the car's mass in kg).
The unit is newtons.
Answer:
Decrease the distance between the two objects.
Explanation:
The force (F) of attraction between two masses (M₁ and M₂) separated by a distance (r) is given by:
F = GM₁M₂ / r²
NOTE: G is the gravitational force constant.
From the equation:
F = GM₁M₂ / r²
We can say that the force is directly proportional to the masses of the object and inversely proportional to the square of the distance between them. This implies that an increase in any of the masses will increase the force of attraction and likewise, a decrease in any of the masses will lead to a decrease in the force of attraction.
Also, an increase in the distance between the masses will result in a decrease in the force of attraction and a decrease in the distance between the masses, will result in an increase in the force of attraction.
Considering the question given above,
To increase the gravitational force between the two objects, we must decrease the distance between the two objects as explained above.