Answer:
0.67 mole/litre
Explanation:
the molarity equall no. of moles ÷ volume of sol.
Answer:
Explanation: Q1 = mc(ice) ΔT (ice warms)
Q2 = ms (ice melts)
Q3 = mc((water) ΔT (water warms)
Q4 = mr (water boils)
Q5 = mc(vapour)ΔT
Empirical formula is the simplest ratio of components making up a compound.
The percentage composition of each element has been given
therefore the mass present of each element in 100 g of compound is
B N H
mass 40.28 g 52.20 g 7.53 g
number of moles
40.28 g / 11 g/mol 52.20 g / 14 g/mol 7.53 g / 1 g/mol
= 3.662 mol = 3.729 mol = 7.53 mol
divide the number of moles by the least number of moles, that is 3.662
3.662 / 3.662 3.729 / 3.662 7.53 / 3.662
= 1.000 = 1.018 = 2.056
the ratio of the elements after rounding off to the nearest whole number is
B : N : H = 1 : 1 : 2
therefore empirical formula for the compound is B₁N₁H₂
that can be written as BNH₂
The solute has to be hydrophilic, (water loving).
Answer:
11.9 is the pOH of a 0.150 M solution of potassium nitrite.
Explanation:
Solution : Given,
Concentration (c) = 0.150 M
Acid dissociation constant = 
The equilibrium reaction for dissociation of
(weak acid) is,

initially conc. c 0 0
At eqm.

First we have to calculate the concentration of value of dissociation constant
.
Formula used :

Now put all the given values in this formula ,we get the value of dissociation constant
.



By solving the terms, we get

No we have to calculate the concentration of hydronium ion or hydrogen ion.
![[H^+]=c\alpha=0.150\times 0.0533=0.007995 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%3D0.150%5Ctimes%200.0533%3D0.007995%20M)
Now we have to calculate the pH.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


pH + pOH = 14
pOH =14 -2.1 = 11.9
Therefore, the pOH of the solution is 11.9