Sugar. (We need a design tech section)
Calcium is used to isolate Rb from molten RbX because calcium has a smaller atomic radius than rubidium.
A chemical element's atomic radius, which is typically the average or typical distance between the nucleus's core and the outermost isolated electron, serves as a gauge for the size of an atom. There are numerous non-equivalent definitions of atomic radius since the border is not a clearly defined physical entity. Van der Waals radius, ionic radius, metallic radius, and covalent radius are the four most frequently used definitions of atomic radius. Atomic radii are typically measured in a chemically bound condition since it is challenging to isolated individual atoms in order to measure their radii individually.
Learn more about atomic radius here:
brainly.com/question/13607061
#SPJ4
Answer:
sorry I didn't know the answer
Explanation:
ok
The coriolis force caused by the Earth's rotation is what gives winds within high-pressure systems their clockwise circulation in the northern hemisphere (as the wind moves outward and is deflected right from the center of high pressure) and counterclockwise circulation in the southern hemisphere (as the wind moves ...
<u>Answer:</u> The mass of sample A after given time is 99.05 g.
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:
![t_{1/2}=\frac{0.693}{k}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B0.693%7D%7Bk%7D)
We are given:
![t_{1/2}=62.1s](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D62.1s)
Putting values in above equation, we get:
![k=\frac{0.693}{62.1}=0.011s^{-1}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B0.693%7D%7B62.1%7D%3D0.011s%5E%7B-1%7D)
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = ![0.011s^{-1}](https://tex.z-dn.net/?f=0.011s%5E%7B-1%7D)
t = time taken for decay process = 84.2 s
= initial amount of the reactant = 250 g
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![0.011s^{-1}=\frac{2.303}{84.2s}\log\frac{250}{[A]}](https://tex.z-dn.net/?f=0.011s%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B84.2s%7D%5Clog%5Cfrac%7B250%7D%7B%5BA%5D%7D)
![[A]=99.05g](https://tex.z-dn.net/?f=%5BA%5D%3D99.05g)
Hence, the mass of sample A after given time is 99.05 g.