Answer:
Volume of sample after droping into the ocean=0.0234L
Explanation:
As given in the question that gas is idealso we can use ideal gas equation to solve this;
Assuming that temperature is constant;
Lets
and
are the initial gas parameter before dropping into the ocean
and
and
are the final gas parameter after dropping into the ocean
according to boyle 's law pressure is inversly proportional to the volume at constant temperature.
hence,

P1=1 atm
V1=1.87L
P2=80atm
V2=?
After putting all values we get;
V2=0.0234L
Volume of sample after droping into the ocean=0.0234L
The answer is letter C.
Because we classify something as a star when it is: a large ball of gas that undergoes nuclear fusion. Given this definition, a comet is not a star. A comet is a ball of ice and dirt hurtling through space, it shines only because it reflects ligh
The full question asks to decide whether the gas was a specific gas. That part is missing in your question. You need to decide whether the gas in the flask is pure helium.
To decide it you can find the molar mass of the gas in the flask, using the ideal gas equation pV = nRT, and then compare with the molar mass of the He.
From pV = nRT you can find n, after that using the mass of gass in the flask you use MM = mass/moles.
1) From pV = nRT, n = pV / RT
Data:
V = 118 ml = 0.118 liter
R = 0.082 atm*liter/mol*K
p = 768 torr * 1 atm / 760 torr = 1.0105 atm
T = 35 + 273.15 = 308.15 K
n = 1.015 atm * 0.118 liter / [ 0.082 atm*liter/K*mol * 308.15K] =0.00472 mol
mass of gas = mass of the fask with the gas - mass of the flasl evacuated = 97.171 g - 97.129 g = 0.042
=> MM = mass/n = 0.042 / 0.00472 = 8.90 g/mol
Now from a periodic table or a table you get that the molar mass of He is 4g/mol
So the numbers say that this gas is not pure helium , because its molar mass is more than double of the molar mass of helium gas.
The Octet rule is a general rule of thumb that applies to most atoms. Basically, it states that every atom wants to have eight valence electrons in its outermost electron shell.
Ions are electrically charged particles formed when atoms lose or gain electrons. They have the same electronic structures as noble gases. Metal atoms form positive ions, while non-metal atoms form negative ions. The strong electrostatic forces of attraction between oppositely charged ions are called ionic bonds.