Answer:
Ethanamine (also known as ethylamine)
Explanation:
The compound that is requested by the question is ethanamine. Its trivial name is ethylamine.
It is a compound that contained the ethyl moiety (CH3CH2-) as well as the amine moiety (-NH2).
Ethanamine has a structure that can easily be determined by the statements in the question.
The structure of ethanamine is shown in the image attached.
C.) Newton. & it's S.I. Unit of Force.
Hope this helps!
<em>All living organisms share several key characteristics or functions: order, sensitivity or response to the environment, reproduction, adaptation, growth and development, homeostasis, energy processing, and evolution. When viewed together, these characteristics serve to define life.</em>
<em>Hey</em><em> </em><em>Mate</em><em>!</em><em> </em><em>!</em><em> </em><em>!</em><em> </em><em>I</em><em> </em><em>hope</em><em> </em><em>this</em><em> </em><em>was</em><em> </em><em>helpful</em><em> </em><em>if</em><em> </em><em>yes</em><em> </em><em>please</em><em> </em><em>mark</em><em> </em><em>me</em><em> </em><em>brainliest</em><em>. </em>
Answer:
Explanation:The atomic number of sodium is 11. That is, the number of electrons in sodium is 11. Therefore, a sodium atom will have two electrons in the first shell, eight in the 2nd orbit, and an electron in the 3rd shell.
Answer:
The reaction will move to the left.
Explanation:
<em>Ba(OH)₂ = Ba²⁺ + 2OH⁻,</em>
<em>Ba(OH)₂ is dissociated to Ba²⁺ and 2OH⁻.</em>
- If H⁺ ions are added to the equilibrium:
H⁺ will combine with OH⁻ to form water.
<em>So, the concentration of OH⁻ will decrease and the equilibrium is disturbed.</em>
<em />
<em>According to Le Châtelier's principle: </em>when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
- So, the reaction will move to the right to suppress the effect of decreasing OH⁻ concentration.
- The base will dissociate to form more OH⁻ and thus, the quantity of Ba(OH)₂ will decrease.
<em>So, the right choice is: the reaction will move to the left, is the choice that will not happen to the equilibrium.</em>