1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marin [14]
3 years ago
6

PLEASE HELP 15 points

Physics
1 answer:
Fofino [41]3 years ago
3 0

Answer:

b. The balloons will decrease to half their original size.

Explanation:

You might be interested in
A lightweight vertical spring of force constant k has its lower end mounted on a table. You compress the spring by a distance d,
shusha [124]

Answer:

v=d\sqrt{\frac{k}{m}}

Explanation:

In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:

U_{0}+K_{0}=U_{f}+K_{f}

In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:

U_{0}=K_{f}

The initial potential energy of the spring is given by the equation:

U_{0}=\frac{1}{2}kd^{2}

the Kinetic energy of the block is then given by the equation:

K_{f}=\frac{1}{2}mv_{f}^{2}

so we can now set them both equal to each other, so we get:

=\frac{1}{2}kd^{2}=\frac{1}{2}mv_{f}^{2}

This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:

kd^{2}=mv_{f}^{2}

so now we can solve this for the final velocity, so we get:

v=d\sqrt{\frac{k}{m}}

6 0
3 years ago
Explain why it is dangerous to jump from a fast moving train
Sergeu [11.5K]

Answer:

When you jump off a train, you jump off a certain height and your downwards (vertical) velocity is zero. But your forward (horizontal) velocity is not. You will hit the ground on split second with your horizontal velocity practically the same as the train.

Explanation:

you be in serious injury.

7 0
3 years ago
A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and
Nastasia [14]

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=\frac{B}{g}-m=\frac{4159 N}{9.8 m/s^2}-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

4 0
3 years ago
A 0.20 kg baseball is traveling at 40 m/s toward the batter. The ball is hit by the bat with a force of 200N, and is
Paraphin [41]

Answer:

Time, t = 0.015 seconds.

Explanation:

Given the following data;

Mass, m = 0.2kg

Force, F = 200N

Initial velocity, u = 40m/s

Final velocity, v = 25m/s

To find the time;

Ft = m(v - u)

Time, t = m(v - u)/f

Substituting into the equation, we have;

Time, t = 0.2(25 - 40)/200

Time, t = 0.2(-15)/200

Time, t = 3/200

Time, t = 0.015 seconds.

Note: We ignored the negative sign because time can't be negative.

8 0
3 years ago
The earth has a vertical electric field at the surface, pointing down, that averages 100 N/C. This field is maintained by variou
zlopas [31]

Answer:

q = 3.6 10⁵  C

Explanation:

To solve this exercise, let's use one of the consequences of Gauss's law, that all the charge on a body can be considered at its center, therefore we calculate the electric field on the surface of a sphere with the radius of the Earth

          r = 6 , 37 106 m

          E = k q / r²

          q = E r² / k

          q = \frac{100 \ (6.37 \ 10^6)^2}{9 \ 10^9}

          q = 4.5 10⁵ C

Now let's calculate the charge on the planet with E = 222 N / c and radius

           r = 0.6 r_ Earth

           r = 0.6 6.37 10⁶ = 3.822 10⁶ m

           E = k q / r²

            q = E r² / k

            q = \frac{222 (3.822 \ 10^6)^2}{ 9 \ 10^9}

            q = 3.6 10⁵  C

4 0
3 years ago
Other questions:
  • This glass of lemonade is sitting in the hot summer sun. As time passes, in which direction will heat transfer take place?
    7·2 answers
  • You start driving north for 9 miles, turn right , and drive East for another 40 miles. At the end of driving, what is your staig
    6·1 answer
  • 3.88 milligrams is equal to how many centigrams?
    10·2 answers
  • What is the value of the temperature 15 degrees Celsius in degrees Kelvin?
    11·1 answer
  • If the distance between two objects is increased,the gravitational attraction between them will.....?
    5·2 answers
  • Can an object with constant acceleration reverse its direction of travel? Can it reverse its direction twice? Explain.
    12·1 answer
  • A particle has charge -1.95 nC. (a) Find the magnitude and direction of the electric field due to this particle at a point 0.225
    10·1 answer
  • After a laser beam passes through two thin parallel slits, the first completely dark fringes occur at 19.0 with the original dir
    9·1 answer
  • What mass will accelerate at 3 m/s² when a net force of 150 N acts on it?
    14·1 answer
  • Find the direction of this
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!