Answer:
a) Therefore 2.6km is greater than 2.57km.
Statement A is greater than statement B.
b) Therefore 5.7km is equal to 5.7km
Statement A is equal to statement B
Explanation:
a) Statement A : 2.567km to two significant figures.
2.567km 2. S.F = 2.6km
Statement B : 2.567km to three significant figures.
2.567km 3 S.F = 2.57km
Therefore 2.6km is greater than 2.57km.
Statement A is greater than statement B.
b) statement A: (2.567 km + 3.146km) to 2 S.F
(2.567km + 3.146km) = 5.713km to 2 S.F = 5.7km
Statement B : (2.567 km, to two significant figures) + (3.146 km, to two significant figures).
2.567km to 2 S.F = 2.6km
3.146km to 2 S.F = 3.1km
2.6km + 3.1km = 5.7km
Therefore 5.7km is equal to 5.7km
Statement A is equal to statement B
Answer:
16250 kgm/s due south
Explanation:
Applying,
M = mv................. Equation 1
Where M = momentum, m = mass, v = velocity.
From the car,
Given: m = 1000 kg, v = 6.5 m/s
Substitute these values into equation 1
M = 1000(6.5)
M = 6500 kgm/s
For the truck,
Given: m = 3500 kg, v = 6.5 m/s
Substitute these values into equation 1
M' = 3500(6.5)
M' = 22750 kgm/s.
Assuming South to be negative direction,
From the question,
Total momentum of the two vehicles = (6500-22750)
Total momentum of the two vehicles = -16250 kgm/s
Hence the total momentum of the two vehicles is 16250 kgm/s due south
Answer:pressure = density * acceleration due to gravity * height
H=72.6cm= 0.726m
P=0.726*13.6*10^3*9.8
P=96761.28Pa
Explanation:
The P value for the given data set is 25127. For finding P value, we have to must find the Z value.
<h3>How to get the z scores?</h3>
If we've got a normal distribution, then we can convert it to standard normal distribution and its values will give us the z score.
The Z value is calculated as;

Z = (X - μ) / σ
Z = (4.007 - 3.6) / 0.607
Z = 0.67051
The P value for the given data set is 25127.
Learn more about z-score here:
brainly.com/question/21262765
#SPJ1
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity