Answer:
15.3 s and 332 m
Explanation:
With the launch of projectiles expressions we can solve this problem, with the acceleration of the moon
gm = 1/6 ge
gm = 1/6 9.8 m/s² = 1.63 m/s²
We calculate the range
R = Vo² sin 2θ / g
R = 25² sin (2 30) / 1.63
R= 332 m
We will calculate the time of flight,
Y = Voy t – ½ g t2
Voy = Vo sin θ
When the ball reaches the end point has the same initial height Y=0
0 = Vo sin t – ½ g t2
0 = 25 sin (30) t – ½ 1.63 t2
0= 12.5 t – 0.815 t2
We solve the equation
0= t ( 12.5 -0.815 t)
t=0 s
t= 15.3 s
The value of zero corresponds to the departure point and the flight time is 15.3 s
Let's calculate the reach on earth
R2 = 25² sin (2 30) / 9.8
R2 = 55.2 m
R/R2 = 332/55.2
R/R2 = 6
Therefore the ball travels a distance six times greater on the moon than on Earth
We have that the letter A in the diagram below given as
Amplitude
Option A
<h3>
Amplitude</h3>
Question Parameters:
Amplitude
Crest
Trough
Wavelength
Generally, the amplitude of a wave is the maximum displacement of the wave in the medium from its initial position.
Amplitude is denoted with the letter A
Therefore,Amplitude
Option A
For more information on displacement visit
brainly.com/question/989117
When an ion is formed, the number of protons does not change. ... By removing an electron from this atom we get a positively charged Na+ ionthat has a net charge of +1. Atoms that gain extra electrons become negatively charged. A neutral chlorine atom, for example, contains 17 protons and 17 electrons.
Answer:
The question is wrong Since if you apply Force on 0.0m²It would mean That the pressure exerted=F/A=F/0
An since we can't divide a number by 0, the question is wrong