Answer:
1m/s is the acceleration used. C
Explanation:
please mark brainliest
Answer:
a)
= 0.25 m / s b) u = 0.25 m / s
Explanation:
a) To solve this problem let's start with the conservation of the moment, for this we define a system formed by the ball plus the dog, in this case all the forces are internal and the moment is conserved
We will write the data
m₁ = 0.40 kg
v₁₀ = 9.0 m / s
m₂ = 14 kg
v₂₀ = 0
Initial
po = m₁ v₁₀
Final
= (m₁ + m₂) vf
po = pf
m₁ v₁₀ = (m₁ + m₂) 
= v₁₀ m₁ / (m₁ + m₂)
= 9.0 (0.40 / (0.40 +14)
= 0.25 m / s
b) This is the reference frame of the center of mass of the system in this case the speed of this frame is the speed of the center of mass
u = 0.25 m / s
In the direction of movement of the ball
c) Let's calculate the kinetic energy in both moments
Initial
K₀ = ½ m₁ v₁₀² +0
K₀ = ½ 0.40 9 2
K₀ = 16.2 J
Final
= ½ (m₁ + m₂)
2
= ½ (0.4 +14) 0.25 2
= 0.45 J
ΔK = K₀ - 
ΔK = 16.2-0.445
ΔK = 1575 J
These will transform internal system energy
d) In order to find the kinetic energy, we must first find the velocities of the individual in this reference system.
v₁₀’= v₁₀ -u
v₁₀’= 9 -.025
v₁₀‘= 8.75 m / s
v₂₀ ‘= v₂₀ -u
v₂₀‘= - 0.25 m / s
‘=
- u
= 0
Initial
K₀ = ½ m₁ v₁₀‘² + ½ m₂ v₂₀‘²
Ko = ½ 0.4 8.75² + ½ 14.0 0.25²
Ko = 15.31 + 0.4375
K o = 15.75 J
Final
= ½ (m₁ + m₂) vf’²
= 0
All initial kinetic energy is transformed into internal energy in this reference system
Answer:
The extension of a material or a spring is its increase in length when pulled. Hooke’s Law says that the extension of an elastic object is directly proportional to the force applied to it. In other words:
Explanation:
Answer:
d) False. If the angular momentum is zero, it implies in electro without turning, which would create a collapse towards the nucleus, so in both models the moment must be different from zero
Explanation:
Affirmations
a) true. The orbits are accurate in the Bohr model and probabilistic in quantum mechanics
b) True. If both give the same results and use the same quantum number (n)
c) True. If in angular momentum it is quantized, in the Bohr model too but it does not justify it
d) False. If the angular momentum is zero, it implies in electro without turning, which would create a collapse towards the nucleus, so in both models the moment must be different from zero