Answer:
Total Work=2275000 ft-lb
Explanation:
According to Riemann sum approximate for work needed to lift the cable:

Sine we have to add 650 terms because distance 650 ft, we will us the integration.
![W=\int\limits^a_b {f(x)} \, dx \\W=\int\limits^{650}_0 {8x} \, dx \\W=[4x^2]_0^{650}\\W=4(650)^2-0^2\\W=4*422500 ft-lb\\W=1690000 ft-lb](https://tex.z-dn.net/?f=W%3D%5Cint%5Climits%5Ea_b%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5C%5CW%3D%5Cint%5Climits%5E%7B650%7D_0%20%7B8x%7D%20%5C%2C%20dx%20%5C%5CW%3D%5B4x%5E2%5D_0%5E%7B650%7D%5C%5CW%3D4%28650%29%5E2-0%5E2%5C%5CW%3D4%2A422500%20ft-lb%5C%5CW%3D1690000%20ft-lb)
Work done on lifting:

Total Work= 
Total Work=1690000+585000
Total Work=2275000 ft-lb
The answer is b because I just know it is
671mi/hr
= 671/60min (calculates miles/min)
= (671/60) ÷ 60seconds (calculates miles/sec)
((671/60) ÷ 60)× 1609m
= 299.899 meters/sec
= 299.90m (round off to 2 decimals )
The electrical charge is neutral. I hope this helps!