To find the change in centripetal acceleration, you should first look for the centripetal acceleration at the top of the hill and at the bottom of the hill.
The formula for centripetal acceleration is:
Centripetal Acceleration = v squared divided by r
where:
v = velocity, m/s
r= radium, m
assuming the velocity does not change:
at the top of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 0.25 m
= 81 m/s^2
at the bottom of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 1.25 m
= 16.2 m/s^2
to find the change in centripetal acceleration, take the difference of the two.
change in centripetal acceleration = centripetal acceleration at the top of the hill - centripetal acceleration at the bottom of the hill
= 81 m/s^2 - 16.2 m/s^2
= 64.8 m/s^2 or 65 m/s^2
Answer:
8.60 g/cm³
Explanation:
In the lattice structure of iron, there are two atoms per unit cell. So:
where
an and A is the atomic mass of iron.
Therefore:

This implies that:

= 
Assuming that there is no phase change gives:

= 8.60 g/m³
Answer:
yes u can flag football has everything that pad football has so you can enlist on being offensive position but you have to play like you want that position
Explanation:
Answer:
0.98kW
Explanation:
The conservation of energy is given by the following equation,


Where
Mass flow
Specific Enthalpy (IN)
Specific Enthalpy (OUT)
Gravity
Heigth state (In, OUT)
Velocity (In, Out)
Our values are given by,




For this problem we know that as pressure, temperature as velocity remains constant, then


Then we have that our equation now is,



Answer:90N
Explanation:
Mass=30kg
Centripetal acceleration=3m/s^2
centripetal force=mass x centripetal acceleration
Centripetal force=30 x 3
Centripetal force =90
Centripetal force =90N