Answer with Explanation:
We are given that




a.Length of segment,l=20 m
Magnetic force ,F=

Substitute the values

Hence, the magnetic force exert by each segment on the other=0.0119 N
b.We know that when current carrying in the wires are in same direction then the force will attract to each other.
Hence, the force will be attractive.
The blank in the question can be filled with the word, “Graph”. Therefore, Graphs are the pictures which are in relationships.
<u>Explanation:
</u>
Graph usually represents a set of data which is nonlinear in occurrence and has some relationship between the two given data. And as graph are pictorial representation, it is simply assumed as the pictures of relationships.
For example, a graph can be drawn for the set of data for the presence of number of students of all the sections of the particular class of a school, as they are relative. But making the graph for number of students in all section of all class but different school cannot be done as non-relative.
<h2>
Answer: The Systeme international (International System of Units
)</h2>
The International System of Units (SI) is used in almost every country in the world (<em>except Burma, Liberia and the United States</em>).
This system was created in 1960 by the 11th General Conference of Weights and Measures in France and is made up of seven basic units:
-Ampere (electric current)
-Kelvin (temperature)
-Second (time)
-Meter (length)
-Kilogram (mass)
-Candela (luminous intensity)
-Mol (amount of substance) *added to the system in 1971
Plus an unlimited number of derived units from the main ones.
Answer:
1.15 m/s
Explanation:
Part of the question is missing. Found the missing part on google:
"1. A hanging mass of 1500 grams compresses a spring 2.0 cm. Find the spring constant in N/m."
Solution:
First of all, we need to find the spring constant. We can use Hooke's law:

where
is the force applied to the spring (the weight of the hanging mass)
x = 2.0 cm = 0.02 m is the compression of the spring
Solving for k, we find the spring constant:

In the second part of the problem, the spring is compressed by
x = 3.0 cm = 0.03 m
So the elastic potential energy of the spring is

This energy is entirely converted into kinetic energy of the cart, which is:

where
m = 500 g = 0.5 kg is the mass of the cart
v is its speed
Solving for v,

Yes, they look exactly like newborn babies