consider the motion of projectile A in vertical direction :
v₀ = initial velocity of projectile A in vertical direction = 0 m/s (since the projectile was launched horizontally)
a = acceleration of the projectile = g = acceleration due to gravity = 9.8 m/s²
t = time of travel for projectile A = 3.0 seconds
Y = vertical displacement of projectile A = height of the cliff = h = ?
using the kinematics equation along the vertical direction as
Y = v₀ t + (0.5) a t²
h = (0) (3.0) + (0.5) (9.8) (3.0)²
h = 44.1 m
Answer:
612000 C
Explanation:
Current, I, is given as the rate of flow of charge, that is:
I = Δq / Δt
where q = electric charge
t = time taken
This implies that:
Δq = I * Δt
The battery rating is 170 Ampere-hours, therefore:
Δq = 170 * 1 hour
But 1 hour = 3600 seconds;
=> Δq = 170 * 3600 = 612000 C
The total charge that the battery can provide is 612000 C.
The density of the object is the ratio of its mass and volume. From the given dimensions above, we determine the volume through the equation,
V = L x W x H
Substituting,
V = (3 cm)(2 cm)(1 cm) = 6 cm³
From the idea presented above,
d = m/V
Substituting the known values,
d = (30 g)/ (6 cm³) = 5 g/cm³
ANSWER: 5 g/cm³
UV Radiation since it has a higher frequency than the others. The higher the frequency the shorter the wavelength.