Answer:
Potential energy = 73.575 kJ
Kinetic energy = 135kJ
Total mechanical energy = 208.575 kJ
Explanation:
The potential energy of a body is given by the expression, PE = mgh, where m is the mass of the body, g is the acceleration due to gravity value and h is the height of the body.
The kinetic energy of a body is given by
, where v is the velocity and m is the mass of body.
Total mechanical energy = Kinetic energy + Potential energy

PE = mgh = 75*9.81*100 = 73575 J = 73.575 kJ
Total mechanical energy = Kinetic energy + Potential energy = 135+73.575
= 208.575 kJ
Answer:
4.32
Explanation:
The centripetal acceleration of any object is given as
A(cr) = v²/r, where
A(c) = the centripetal acceleration
v = the linear acceleration
r = the given radius, 1.9 m
Since we are not given directly the centripetal acceleration, we'd be using the value of acceleration due to gravity, 9.8. This means that
9.8 = v²/1.9
v² = 1.9 * 9.8
v² = 18.62
v = √18.62
v = 4.32 m/s
This means that, the minimum speed the cup must have so as not to get wet or any spill is 4.32 m/s
Answer:
the second one
Explanation:
When a free positive charge q is accelerated by an electric field, such as shown in Figure 1, it is given kinetic energy. The process is analogous to an object being accelerated by a gravitational field. It is as if the charge is going down an electrical hill where its electric potential energy is converted to kinetic energy. Let us explore the work done on a charge q by the electric field in this process, so that we may develop a definition of electric potential energy.
The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken. This is exactly analogous to the gravitational force in the absence of dissipative forces such as friction. When a force is conservative, it is possible to define a potential energy associated with the force, and it is usually easier to deal with the potential energy (because it depends only on position) than to calculate the work directly.
Hi! Some rocks are porous material, like a sponge, with lots of air pockets inside, so they can absorbe water. In this case, the water level dropped 5.65m because tha volume of water went inside the rock filling the air pockets. The water replaced the air, that flowed to the outside water as bubbles and then to the air above the water.
Answer:
0.056 miles away
Explanation:
From sound wave,
v = 2x/t .................................. Equation 1
Where v = velocity of sound in air, x = distance of echo, t = time.
making x the subject of the equation,
x = 2v/t........................... Equation 2.
Given: v = 344 m/s, t = 7.6 s.
Substituting into equation 2
x = 2(344)/7.6
x = 90.53 m.
x = 90.53/1609.344
x = 0.056 mile.
Thus the lighting strike 0.056 miles away