Number of moles:
1 mole ---------- 6.02x10²³ molecules
? moles --------- 9.45x10²⁴ molecules
1 x ( 9.45x10²⁴) / 6.02x10²³ =
9.45x10²⁴ / 6.02x10²³ => 15.69 moles of CH3OH
Therefore:
Molar mass CH3OH = 32.04 g/mol
1 mole ------------ 32.04 g
15.69 moles ----- mass methanol
Mass methanol = 15.69 x 32.04 / 1 => 502.7076 g
Answer:
Water has strong hydrogen bond dipole-dipole intermolecular forces that give water a high surface tension and a high heat of vaporization and that make it a strong solvent.
Explanation:
On the other hand ammonia is a very dangerous chemical which has a pungent smell and effect the eyes of the user. Thus it kept always in the fume exhaust hood for storing and dispensing function.
The pH of ammonia buffer contains ammonium hydroxide (NH₄OH) and a salt of ammonia with a strong acid like (HCl) which produces, ammonium chloride (NH₄Cl) mixture. The evaporation rate of ammonia is so high at room temperature thus on opening of the buffer solution the ammonia get evaporated very fast and the concentration of ammonia decreases which affect the pH of the buffer solution.
Thus the reason to put ammonia buffer in fume hood is explained.
Answer:
0.0303 Liters
Explanation:
Given:
Mass of the potassium hydrogen phosphate = 0.2352
Molarity of the HNO₃ Solution = 0.08892 M
Now,
From the reaction it can be observed that 1 mol of potassium hydrogen phosphate reacts with 2 mol of HNO₃
The number of moles of 0.2352 g of potassium hydrogen phosphate
= Mass / Molar mass
also,
Molar mass of potassium hydrogen phosphate
= 2 × (39.09) + 1 + 30.97 + 4 × 16 = 174.15 g / mol
Number of moles = 0.2352 / 174.15 = 0.00135 moles
thus,
The number of moles of HNO₃ required for 0.00135 moles
= 2 × 0.00135 mol of HNO₃
= 0.0027 mol of HNO₃
Now,
Molarity = Number of Moles / Volume
thus,
for 0.0027 mol of HNO₃, we have
0.08892 = 0.0027 / Volume
or
Volume = 0.0303 Liters