Iodine..............................
1. electrostatic interactions
<span>3. van de waals interactions </span>
<span>4. hydrogen bonding </span>
Explanation:
Iam sorry I don't know but why Iam messaging iss because when more people message it usually appears to more people so someone else will be able to help you:)
Answer:
The sample of lead has a volume of 11.1 cm³
Explanation:
<u>Step 1:</u> Data given
x cm³ lead has a density of 11.3 g/cm³
it has the same mass as 330cm³ of a piece of redwood with density 0.38g/cm³
<u>Step 2</u>: Calculate mass of the piece of redwood
Density = mass/volume
mass = density * volume
Mass of the piece of redwood = 0.38 g/cm³ * 330cm³ = 125.4 grams
Since the sample of lead has the same mass, it also has a mass of 125.4 grams
<u>Step 3</u>: Calculate volume of the lead
Density = mass/ volume
Volume = mass/ density
Volume of lead = 125.4g / 11.3g/cm³ = 11.097 cm³≈11.1 cm³
The sample of lead has a volume of 11.1 cm³
Answer:
The concentration of the resulting solution in parts per million is 177.97
Explanation:
Parts per million (ppm), is a unit of measure for concentration that refers to the number of units of the substance per million units of the set.
The concentration in parts per million expressed in mass / mass is calculated by dividing the mass of the solute (ms) by the mass of the solution (md, sum of the mass of the solute and the mass of the solvent), both expressed in the same unit and multiplied by 10⁶ (1 million).

So, being:
- md: 0.089 grams of KI + 500 grams of H₂O= 500.089 grams
Replacing:

ppm= 177.97
<u><em>The concentration of the resulting solution in parts per million is 177.97</em></u>