1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
2 years ago
14

The perimeter of the triangle shown to the right is 338 meters. Find the length to each side

Mathematics
1 answer:
Flauer [41]2 years ago
8 0

Answer:

85

Step-by-step explanation:

If you add all the sides then add 2 (from the 4x-2) then you'll get 8x.

340/8=85

x=85

You might be interested in
If you divide an inheritance of $45,600.00 among 22 heirs, each heir will receive
yaroslaw [1]
Each heir would receive $20727.27 
8 0
3 years ago
Suppose a geyser has a mean time between irruption’s of 75 minutes. If the interval of time between the eruption is normally dis
lesya [120]

Answer:

(a) The probability that a randomly selected Time interval between irruption is longer than 84 minutes is 0.3264.

(b) The probability that a random sample of 13 time intervals between irruption has a mean longer than 84 minutes is 0.0526.

(c) The probability that a random sample of 20 time intervals between irruption has a mean longer than 84 minutes is 0.0222.

(d) The probability decreases because the variability in the sample mean decreases as we increase the sample size

(e) The population mean may be larger than 75 minutes between irruption.

Step-by-step explanation:

We are given that a geyser has a mean time between irruption of 75 minutes. Also, the interval of time between the eruption is normally distributed with a standard deviation of 20 minutes.

(a) Let X = <u><em>the interval of time between the eruption</em></u>

So, X ~ Normal(\mu=75, \sigma^{2} =20)

The z-score probability distribution for the normal distribution is given by;

                            Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean time between irruption = 75 minutes

           \sigma = standard deviation = 20 minutes

Now, the probability that a randomly selected Time interval between irruption is longer than 84 minutes is given by = P(X > 84 min)

 

    P(X > 84 min) = P( \frac{X-\mu}{\sigma} > \frac{84-75}{20} ) = P(Z > 0.45) = 1 - P(Z \leq 0.45)

                                                        = 1 - 0.6736 = <u>0.3264</u>

The above probability is calculated by looking at the value of x = 0.45 in the z table which has an area of 0.6736.

(b) Let \bar X = <u><em>sample time intervals between the eruption</em></u>

The z-score probability distribution for the sample mean is given by;

                            Z  =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \mu = population mean time between irruption = 75 minutes

           \sigma = standard deviation = 20 minutes

           n = sample of time intervals = 13

Now, the probability that a random sample of 13 time intervals between irruption has a mean longer than 84 minutes is given by = P(\bar X > 84 min)

 

    P(\bar X > 84 min) = P( \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } > \frac{84-75}{\frac{20}{\sqrt{13} } } ) = P(Z > 1.62) = 1 - P(Z \leq 1.62)

                                                        = 1 - 0.9474 = <u>0.0526</u>

The above probability is calculated by looking at the value of x = 1.62 in the z table which has an area of 0.9474.

(c) Let \bar X = <u><em>sample time intervals between the eruption</em></u>

The z-score probability distribution for the sample mean is given by;

                            Z  =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \mu = population mean time between irruption = 75 minutes

           \sigma = standard deviation = 20 minutes

           n = sample of time intervals = 20

Now, the probability that a random sample of 20 time intervals between irruption has a mean longer than 84 minutes is given by = P(\bar X > 84 min)

 

    P(\bar X > 84 min) = P( \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } > \frac{84-75}{\frac{20}{\sqrt{20} } } ) = P(Z > 2.01) = 1 - P(Z \leq 2.01)

                                                        = 1 - 0.9778 = <u>0.0222</u>

The above probability is calculated by looking at the value of x = 2.01 in the z table which has an area of 0.9778.

(d) When increasing the sample size, the probability decreases because the variability in the sample mean decreases as we increase the sample size which we can clearly see in part (b) and (c) of the question.

(e) Since it is clear that the probability that a random sample of 20 time intervals between irruption has a mean longer than 84 minutes is very slow(less than 5%0 which means that this is an unusual event. So, we can conclude that the population mean may be larger than 75 minutes between irruption.

8 0
2 years ago
A basic cellular phone plan costs $4 per month for 70 calling minutes. Additional time costs $0.10 per minute. The formula C= 4+
Harrizon [31]

Answer:

For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.

Step-by-step explanation:

The problem states that the monthly cost of a celular plan is modeled by the following function:

C(x) = 4 + 0.10(x-70)

In which C(x) is the monthly cost and x is the number of calling minutes.

How many calling minutes are needed for a monthly cost of at least $7?

This can be solved by the following inequality:

C(x) \geq 7

4 + 0.10(x - 70) \geq 7

4 + 0.10x - 7 \geq 7

0.10x \geq 10

x \geq \frac{10}{0.1}

x \geq 100

For a monthly cost of at least $7, you need to have at least 100 calling minutes.

How many calling minutes are needed for a monthly cost of at most 8:

C(x) \leq 8

4 + 0.10(x - 70) \leq 8

4 + 0.10x - 7 \leq 8

0.10x \leq 11

x \leq \frac{11}{0.1}

x \leq 110

For a monthly cost of at most $8, you need to have at most 110 calling minutes.

For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.

8 0
3 years ago
Please help.<br>find the missing side or angle and each problem . <br>​
Jlenok [28]
1. 27
2. 55
3. 20
4. 21
4 0
3 years ago
What is 3,000 is ___ times as muchas 30.
Katen [24]
The answer would be 100 because 100x30 equals to 3,000

I hope this is the answer you were looking for
7 0
3 years ago
Other questions:
  • Find the sum of 3 - 7i and 8 + 4i.<br><br> 11 - 3i<br> 11 + 3i<br> 22 - 8i<br> -22 + 8i
    14·2 answers
  • 5y^2-6y-11-6y^2+2y+5
    10·1 answer
  • Gracie baked 4 apple pies. She cuts the pies into halves and will give them to her neighbors. How many neighbors will get 1/2 of
    15·2 answers
  • ben has 6 pounds of bolts in his auto shop he has to seperate them into boxeseach with 1/3 pound of bolts how many boxes can he
    8·1 answer
  • Help on this one also please?!?
    11·1 answer
  • WILL MARK BRAINLIEST
    11·1 answer
  • Divide by using long<br><br> division.<br><br> (x²-x-6)<br><br> =<br><br> (x-3)
    8·1 answer
  • Does anyone know the answer ???????
    8·2 answers
  • The diagram shows a circle drawn inside a square
    7·1 answer
  • the length of a cell is 2/3 mm. If the area of the cell is 1/12 square mm, whtat is the width of the cell
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!