Answer: 12 tables minimum, 15 max.
Step-by-step explanation:
If you substitute 14 in an inequality
200c + 500t >= 8800
200(14) + 500t and solve for t, you get t must be at least 12.
C +T cannot exceed 29
So figure 14 +12 =26 so they could sell up to 15 tables and not go over 29.
You will have to enter the t values 12,13,14,15
<h3>Answer: C) none of the equations are identities</h3>
If you plugged theta = 0 into the first equation, then you would have
sin(45) + cos(45) = sin(0) + cos(0)
sqrt(2) = 1
which is a false equation. We don't have an identity here.
The same story happens with the second equation. Plug in theta = 0 and it becomes
cos(60) - sin(60) = cos^2(0) + tan(0)
1/2 - sqrt(3)/2 = 1 + 0
-0.37 = 1
which is false.
Vertex form of a parabola
<span>y = a (x - h)^2 + k </span>
<span>where (h, k) is the vertex </span>
Substituting the values of h and k.
we get,
<span>y = a(x + 4)^2 + 2 </span>
<span>substituting in the point (0, -30) for x and y
</span><span>-30 = a (0 + 4)^2 + 2
</span>solve for a,
<span>-30 = 16 a + 2 </span>
<span>-32 = 16 a </span>
<span>-2 = a </span>
<span>y = -2(x + 4)^2 + 2 </span>
<span>Put y = 0 </span>
<span>-2 x^2 - 16 x - 30 = 0 </span>
<span>-2(x^2 + 8 x + 15) = 0 </span>
<span>x^2 + 8 x + 15 = 0 </span>
<span>(x + 3)(x + 5) = 0 </span>
<span>x = -3
x = -5</span>
5x - 5 = x + 11
5x = x + 16
4x = 16
x = 4
Answer:
A = E and B = D
Step-by-step explanation:
AAS means triangles are congruent if two pairs of corresponding angles and a pair of opposite sides are equal in both triangles. In this, A corresponds to E and B to D. BC and CD are congruent. Therefore the triangles are congruent