Answer: see proof below
<u>Step-by-step explanation:</u>
Given: cos 330 = 
Use the Double-Angle Identity: cos 2A = 2 cos² A - 1

Proof LHS → RHS:
LHS cos 165
Double-Angle: cos (2 · 165) = 2 cos² 165 - 1
⇒ cos 330 = 2 cos² 165 - 1
⇒ 2 cos² 165 = cos 330 + 1
Given: 

Divide by 2: 

Square root: 
Scratchwork: 

Since cos 165 is in the 2nd Quadrant, the sign is NEGATIVE

LHS = RHS 
Answer:
A: 200 combinations
Step-by-step explanation:
You multiply 4 by 10 to get 40 and then you multiply 40 by 5 to get 200 options
Answer:
aw dawd awdaw adawd awd a
Step-by-step explanation:aw dawd awd a
wd awd awd a awa da a
d ad a
d aw
d aw
daw
d
awd
ad
ad adawd awd awdd
Answer:
The answer is B
Step-by-step explanation:
f(x) = 4x² + 1
g(x) = x² - 5
(f-g)(x) = 4x² + 1 - (x²-5)
= 4x² + 1 - x² + 5
= 3x² + 6
Answer:
Third option : 9^10 / 9^2
Step-by-step explanation:
9^2 . 9^6
Formula / Identity : -
a^m . a^n = a^( m + n )
Here,
a = 9
m = 2
n = 6
9^2 . 9^6
= 9^( 2 + 6 )
=9^8
9^10 / 9^2
Formula / Identity : -
a^m / a^n = a^( m - n )
Here,
a = 9
m = 10
n = 2
9^10 / 9^2
= 9^( 10 - 2 )
= 9^8
Therefore,
9^10 / 9^2 is equivalent to 9^2 . 9^6.