Answer: A capacitor connected across the output allows the AC signal to pass through it and blocks the DC signal, thus acting as a high pass filter. The output across the capacitor is thus an unregulated filtered DC signal. This output can be used to drive electrical components like relays, motors, etc.
Explanation:
Answer:
1. Yes, they are all necessary.
2. Both written and verbal communication skills are of the utmost importance in business, especially in engineering. Communication skills boost you or your teams' performance because they provide clear information and expectations to help manage and deliver excellent work.
Answer:
1) The exergy of destruction is approximately 456.93 kW
2) The reversible power output is approximately 5456.93 kW
Explanation:
1) The given parameters are;
P₁ = 8 MPa
T₁ = 500°C
From which we have;
s₁ = 6.727 kJ/(kg·K)
h₁ = 3399 kJ/kg
P₂ = 2 MPa
T₂ = 350°C
From which we have;
s₂ = 6.958 kJ/(kg·K)
h₂ = 3138 kJ/kg
P₃ = 2 MPa
T₃ = 500°C
From which we have;
s₃ = 7.434 kJ/(kg·K)
h₃ = 3468 kJ/kg
P₄ = 30 KPa
T₄ = 69.09 C (saturation temperature)
From which we have;
h₄ =
+ x₄×
= 289.229 + 0.97*2335.32 = 2554.49 kJ/kg
s₄ =
+ x₄×
= 0.94394 + 0.97*6.8235 ≈ 7.563 kJ/(kg·K)
The exergy of destruction,
, is given as follows;
= T₀ ×
= T₀ ×
× (s₄ + s₂ - s₁ - s₃)
= T₀ ×
×(s₄ + s₂ - s₁ - s₃)/(h₁ + h₃ - h₂ - h₄)
∴
= 298.15 × 5000 × (7.563 + 6.958 - 6.727 - 7.434)/(3399 + 3468 - 3138 - 2554.49) ≈ 456.93 kW
The exergy of destruction ≈ 456.93 kW
2) The reversible power output,
=
+
≈ 5000 + 456.93 kW = 5456.93 kW
The reversible power output ≈ 5456.93 kW.
Answer:
diesel fuel is pumped at high pressure to the injectors which are responsible for entering the fuel into the combustion chamber,
when the piston is at the top the pressure is so high that it explodes the fuel (diesel) that results in a generation of mechanical power
Answer:
Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.
Explanation:
As a PC board designer, I would sometimes spend a certain amount of time making traces have shorter routes, or fewer layer changes or bends. (I wanted to make the layout "pretty.") In some cases, these changes are superficial, affecting the appearance only. In some cases, they are functional, reducing crosstalk or emissions or susceptibility to interference.
I deal with a web site that seems to be changing all the time (Brainly). In many cases, the same information is rearranged on the page—a superficial change. In other cases, the information being displayed changes, or the way that certain information is accessed changes. These are functional changes. (Sometimes, they "enhance performance," and sometimes they don't, IMO.)
In short ...
<em>Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.</em>