Answer:
a) 
b) 
Explanation:
Previous concepts
The cumulative distribution function (CDF) F(x),"describes the probability that a random variableX with a given probability distribution will be found at a value less than or equal to x".
The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution".
Part a
Let X the random variable of interest. We know on this case that 
And we know the probability denisty function for x given by:

In order to find the cdf we need to do the following integral:

Part b
Assuming that
, then the density function is given by:

And for this case we want this probability:

And evaluating the integral we got:

Answer:
to power devices appliances and some methods of transportation
Explanation:
Answer:
hello your question is incomplete attached below is the complete question
A) overall mean = 5.535, standard deviation ≈ 0.3239
B ) upper limit = 5.85, lower limit = 5.0
C) Not all the samples meet the contract specifications
D) fluctuation ( unstable Asphalt content )
Explanation:
B) The daily average asphalt content has to obtained in order to determine the upper and lower control limits using an average asphalt content of 5.5% +/- 0.5% everyday
The upper limit : 14 may = ( 5.8 + 5.1 ) / 2 = 5.85
The lower limit : 16 may = ( 5.2 + 4.8 ) / 2 = 5.0
attached below is the required plot
C ) Not all the samples meet the contract specifications and the samples that do not meet up are samples from :
15 may and 16 may . this is because their Asphalt contents are 6.2 and 4.8 respectively and sample number 18 and 20
D ) what can be observed is that the ASPHALT content fluctuates between the dates while the contract specification is fixed
Answer:
Explanation:
There are three points in time we need to consider. At point 0, the mango begins to fall from the tree. At point 1, the mango reaches the top of the window. At point 2, the mango reaches the bottom of the window.
We are given the following information:
y₁ = 3 m
y₂ = 3 m − 2.4 m = 0.6 m
t₂ − t₁ = 0.4 s
a = -9.8 m/s²
t₀ = 0 s
v₀ = 0 m/s
We need to find y₀.
Use a constant acceleration equation:
y = y₀ + v₀ t + ½ at²
Evaluated at point 1:
3 = y₀ + (0) t₁ + ½ (-9.8) t₁²
3 = y₀ − 4.9 t₁²
Evaluated at point 2:
0.6 = y₀ + (0) t₂ + ½ (-9.8) t₂²
0.6 = y₀ − 4.9 t₂²
Solve for y₀ in the first equation and substitute into the second:
y₀ = 3 + 4.9 t₁²
0.6 = (3 + 4.9 t₁²) − 4.9 t₂²
0 = 2.4 + 4.9 (t₁² − t₂²)
We know t₂ = t₁ + 0.4:
0 = 2.4 + 4.9 (t₁² − (t₁ + 0.4)²)
0 = 2.4 + 4.9 (t₁² − (t₁² + 0.8 t₁ + 0.16))
0 = 2.4 + 4.9 (t₁² − t₁² − 0.8 t₁ − 0.16)
0 = 2.4 + 4.9 (-0.8 t₁ − 0.16)
0 = 2.4 − 3.92 t₁ − 0.784
0 = 1.616 − 3.92 t₁
t₁ = 0.412
Now we can plug this into the original equation and find y₀:
3 = y₀ − 4.9 t₁²
3 = y₀ − 4.9 (0.412)²
3 = y₀ − 0.83
y₀ = 3.83
Rounded to two significant figures, the height of the tree is 3.8 meters.