Answer: The most likely partial pressures are 98.7MPa for NO₂ and 101.3MPa for N₂O₄
Explanation: To determine the partial pressures of each gas after the increase of pressure, it can be used the equilibrium constant Kp.
For the reaction 2NO₂ ⇄ N₂O₄, the equilibrium constant is:
Kp = 
where:
P(N₂O₄) and P(NO₂) are the partial pressure of each gas.
Calculating constant:
Kp = 
Kp = 0.0104
After the weights, the total pressure increase to 200 MPa. However, at equilibrium, the constant is the same.
P(N₂O₄) + P(NO₂) = 200
P(N₂O₄) = 200 - P(NO₂)
Kp = 
0.0104 = ![\frac{200 - P(NO_{2}) }{[P(NO_{2} )]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B200%20-%20P%28NO_%7B2%7D%29%20%20%7D%7B%5BP%28NO_%7B2%7D%20%29%5D%5E%7B2%7D%7D)
0.0104
+
- 200 = 0
Resolving the second degree equation:
=
= 98.7
Find partial pressure of N₂O₄:
P(N₂O₄) = 200 - P(NO₂)
P(N₂O₄) = 200 - 98.7
P(N₂O₄) = 101.3
The partial pressures are
= 98.7 MPa and P(N₂O₄) = 101.3 MPa
The empirical formula for 200 grams of an organic sample which contains carbon,hydrogen, and oxygen is C3H6O
Baking soda. to put in the most simple terms..
-OH is the "base" anion
H+ is the "acid" ion
Answer:
avogadro's constant
Explanation:
this is the fixed number of the atoms in the molecule of an element
avogadro's law states that equal volumes of gases<em> </em><em>at</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>temperature</em><em> </em><em>and</em><em> </em><em>pressure</em><em> </em><em> </em><em>contain</em><em> </em><em>equal</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>molecules</em><em> </em>
<em>that</em><em> </em><em>is</em><em> </em><em>all</em><em> </em><em>gases</em><em> </em><em>with</em><em> </em><em>same</em><em> </em><em>temperature</em><em> </em><em>and</em><em> </em><em>pressure</em><em> </em><em>will</em><em> </em><em>always</em><em> </em><em>have</em><em> </em><em>equal</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>molecules</em><em> </em>
<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
Hence, the correct answer is Option D.