Answer:
Magnesium hydroxide has 3 unique elements.
Explanation:
Long story short, 2 is the balancing compound in structure to make up hydroxide, therefore 1 compound would be left to create Mg(2O)H.
(This is only an opinion of mathematical science to me, I don't have complete understanding of this subject either, good luck.)
Answer:
The mass of NaCl is 0.029 grams
Explanation:
Step 1: Data given
Molecular weight of NaCl = 58.44 g/mol
Volume of solution = 100 mL = 0.100 L
Molarity = 0.0050 M
Step 2: Calculate moles NaCl
Moles NaCl = molarity * volume
Moles NaCl = 0.0050 M * 0.100 L
Moles NaCl = 0.00050 moles
Step 3: Calculate mass NaCl
Mass NaCl = moles NaCl * molar mass NaCl
Mass NaCl = 0.00050 moles * 58.44 g/mol
Mass NaCl = 0.029 grams
The mass of NaCl is 0.029 grams
Answer:
CaF2
Explanation:
Calcium fluoride is a solid formed by the chemical combination of Calcium (Ca) and Fluorine (F). Two molecules of fluorine (F2) and one molecule of Calcium (Ca) are needed to form the Calcium Fluoride molecule.
An ionic bond is formed between the Calcium and Fluorine atoms i.e. electrons are transferred from calcium atoms to fluorine atoms. The calcium ion is a cation with formula; Ca2+ while fluorine is an anion with formula; F-. Hence, it takes two molecules of Fluorine ion (F-) to form a relatively stable and neutral molecule with 1 molecule of Calcium ion (Ca2+).
Answer:
B 1.23 g/cc
Explanation:
For something to float on seawater, the density must be less than 1.03 g/mL. If the object sinks, the density is greater than 1.03 g/mL.
Let’s examine the answer choices. Keep in mind, the ice berg is mostly below the water level.
A. 0.88 g/cc
This is less than 1.03 g/cc, which would result in floating.
B. 1.23 g/cc
This is the best answer choice. The iceberg is mostly beneath the water, but some of it is exposed. The density is greater than 1.03 g/mL, but not so much greater that it would immediately sink.
C. 0.23 g/cc
This is less than 1.03 g/cc, which would produce floating.
D. 4.14 g/cc
This is much greater than 1.03 g/cc and the result would be sinking.
(a) 43.6 mg; (b) 520 mg
(a) <em>Mass of phosphoric acid (PA) in a dose
</em>
Mass of PA = 2 tsp × (21.8 mg PA/1 tsp) = 43.6 mg PA
(b) <em>Mass of PA in the bottle
</em>
<em>Step 1</em>. Convert <em>ounces to millilitres
</em>
Volume = 4 oz × (30 mL/1 oz) = 120 mL
<em>Step 2.</em> Calculate the mass of PA
Mass of PA = 120 mL × (21.8 mg PA/5 mL) ≈ 520 mg PA