The Boyle-Mariotte's law or Boyle's law is one of the laws of gases that <u>relates the volume (V) and pressure (P) of a certain amount of gas maintained at constant temperature</u>, as follows:
PV = k
where k is a constant.
We can relate the state of a gas at a specific pressure and volume to another state in which the same gas is at different P and V since the product of both variables is equal to a constant, according to the Boyle's law, which will be the same regardless of the state of the gas. In this way,
P₁V₁ = P₂V₂
Where P₁ and V₁ is the pressure and volume of the gas to a state 1 and P₂ and V₂ is the pressure and volume of the same gas in a state 2.
In this case, in the state 1 the gas occupies a volume V₁ = 100 mL at a pressure of P₁ = 150 kPa. Then, in the state 2 the gas occupies a volume V₂ (that we must calculate through the boyle's law) at a pressure of P₂ = 200 kPa. Substituting these values in the previous equation and clearing V₂, we have,
P₁V₁ = P₂V₂ → V₂ =
→ V₂ = 
→ V₂ = 75 mL
Then, the volume occupied by the gas at 200 kPa is V₂ = 75 mL
Answer:A
Explanation:becuse they waste less heat energy
Answer:
creation of radioactive wastes such as uranium mill tailings, spent (used) reactor fuel, and other radioactive wastes.
Explanation:
Nuclear energy produces radioactive waste
A major environmental concern related to nuclear power is the creation of radioactive wastes such as uranium mill tailings, spent (used) reactor fuel, and other radioactive wastes. These materials can remain radioactive and dangerous to human health for thousands of years.
Answer:
H+ and NO3- ions
Explanation:
The Pb²+ ions react with the SO4²‐ ions to form a solid precipitate, i.e. they bond together and undergo a phase change;
On the contrary, the H+ and NO3- ions are aqueous ions before the reaction and the same after the reaction, i.e. they don't change;
Hence, the H+ and NO3- ions are spectator ions
The way to do this type of question is to consider what changes and what doesn't, look at phase changes and oxidation state changes
The mass of krypton tetrachloride that can be produced assuming 100% yield is mathematically given as
molar mass=33.29g
<h3>What mass of
krypton tetrachloride can be
produced assuming 100% yield?</h3>
Generally, the equation for ideal gas is mathematically given as
PV=nRT
Therefore
n=(0.50)(15.)/0.082*623
n=0.147mol
Hence for clorine
n=0.441mol
Given the reaction
Kr+2cl2---->KrCL4
Hence
molar mass=225.60*0.147
molar mass=33.29g
Read more about Chemical Reaction
brainly.com/question/11231920
#SPJ1