<span>If two wheels are exactly the same but spin at different speeds, wheel b is twice te speed of wheel a, it is possible to find the ratio of the magnitude of radial acceleration at a singular point of the rim on wheel be to the spot is four.</span>
They are measured in joules, calories, and kilocalories
Answer:
Pebble A has 1/3 the acceleration as pebble B.
Explanation:
F = m×a
mass of a = 3 × mass of b (m_a = 3 × m_b)
Same starting force, F
m_a = mass of a
m_b = mass of b
a_a = acceleration of a
a_b = acceleration of b
F = m_a × a_a = m_b × a_b
3 × m_b × a_a = m_b × a_b
3 × a_a = a_b
OR
a_a = a_b / 3
Answer:
0.2289
Explanation:
Power required to climb= Fv where F is force and v is soeed. We know that F= mg hence Power, P= mgv and substituting 700 kg for m, 9.81 for g and 2.5 m/s for v then
P= 700*9.81*2.5=17167.5 W= 17.1675 kW
To express it as a fraction of 75 kw then 17.1675/75=0.2289 or 22.89%
The capacitance of a capacitor is the ratio of the stored charge to its potential difference, i.e.
C = Q/ΔV
C is the capacitance
Q is the stored charge
ΔV is the potential difference
Rearrange the equation:
ΔV = Q/C
We also know the capacitance of a parallel-plate capacitor is given by:
C = κε₀A/d
C is the capacitance
κ is the capacitor's dielectric constant
ε₀ is the electric constant
A is the area of the plates
d is the plate separation
If we substitute C:
ΔV = Qd/(κε₀A)
We assume the stored charge and the area of the plates don't change. Then if we double the plate spacing, i.e. we double the value of d, then the potential difference ΔV is also doubled.