Yes, your weight can change if the force of gravity is different on a different planet.
Like
on the Moon because acceleration due to gravity is 1/6 that on the
Earth, your weight on the Moon would be 1/6 the value on the Earth.
But note that you mass remains the same.
I think that by "Classical physics" is meant low speed things. By low speed, I think is meant speed far below very roughly half the speed of light, so that Relativistic, special or general, effects can be ignored. Or at least it is hoped that they can be ignored.
Fire extinguishers and rockets get propelled by forcing out large amounts of material (gases under very high pressure) through a nozzle, and the RECOIL from that propels something forward. So, if the action is the ejection of material, the reaction (recoil) is the ejector moving along the same line in the other direction. And that's an example of Newton's third law.
Given a propulsion system, the magnitude of the force recoiling on the ejector will change the momentum of the ejector, often written as the equation F=ma where F is the force, m is the mass being accelerated, and a being the acceleration.
Just as something will stay still until it is moved - inertia - so once set in uniform motion in a straight line, the thing will continue in that motion, theoretically for ever or until something alters its momentum. Newton's first law is to the effect of "every body continues in a state of rest or uniform motion in a straight line unless acted on by a resultant external force". Which, I think, is where the concept of inertia stems from.
I think that the above mostly tcuches on the 3 laws.Any more help needed, please ask.
Its 1.0*10^-7M its considered a concentration because hydrogen ion is exactly equal to hydroxide ions produced by dissociation of water
Answer:
Christian Doppler
Explanation:
The Scientist with the most significant contribution to the discovery of planets around other stars is Christian Doppler and his work that made this discovery possible is the Principle of DOPPLER EFFECT
<em>Christian Doppler was an Austrian scientist and physicist whose principle Doppler effect explained how observed frequency of light and sound waves are affected by a relative motion of both the source and detector </em>
Answer:
The sound intensity level in the car is 57.2 dB.
Explanation:
Sound intensity level in decibels, β = 10 log (I/I₀); where I = 0.525 × 10⁻⁶ W/m², I₀ = 1.0 × 10⁻¹² W/m²
β (dB) = 10 log ((0.525 × 10⁻⁶)/(1.0 × 10⁻¹²)) = 10 × 5.72 = 57.2 dB
Hope this Helps!!!