1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
3 years ago
5

Calculate the electric field intensityat a Point 15cm from a charge of 10 uc​

Physics
1 answer:
JulijaS [17]3 years ago
3 0

Answer:

it's very easy and simple answer u can't do it

You might be interested in
Force is measured in units called
balu736 [363]

Answer:

Newtons

Explanation:

8 0
4 years ago
Read 2 more answers
Which statement is true?
vivado [14]

Answer:

The speed of sound in air is not affected by the temperature

Explanation:

It just isn't™

4 0
3 years ago
the very high voltage needed to create a spark across the spark plug is produced at the a. transformer's primary winding. b. tra
Karo-lina-s [1.5K]
I think the correct answer from the choices listed above is option B. The very high voltage needed to create a spark across the spark plug is produced at the  transformer's secondary winding. <span>The secondary coil is engulfed by a powerful and changing magnetic field. This field induces a current in the coils -- a very high-voltage current.</span>
5 0
3 years ago
Read 2 more answers
Charge q1 = +2.00 μC is at -0.500 m along the x axis. Charge q2 = -2.00 μC is at 0.500 m along the x axis. Charge q3 = 2.00 μC i
Kobotan [32]

The magnitude of <em>electrical</em> force on charge q_{3} due to the others is 0.102 newtons.

<h3>How to calculate the electrical force experimented on a particle</h3>

The vector <em>position</em> of each particle respect to origin are described below:

\vec r_{1} = (-0.500, 0)\,[m]

\vec r_{2} = (+0.500, 0)\,[m]

\vec r_{3} = (0, +0.500)\,[m]

Then, distances of the former two particles particles respect to the latter one are found now:

\vec r_{13} = (+0.500, +0.500)\,[m]

r_{13} = \sqrt{\vec r_{13}\,\bullet\,\vec r_{13}} = \sqrt{(0.500\,m)^{2}+(0.500\,m)^{2}}

r_{13} =\frac{\sqrt{2}}{2}\,m

\vec r_{23} = (-0.500, +0.500)\,[m]

r_{23} = \sqrt{\vec r_{23}\,\bullet \,\vec r_{23}} = \sqrt{(-0.500\,m)^{2}+(0.500\,m)^{2}}

r_{23} =\frac{\sqrt{2}}{2}\,m

The resultant force is found by Coulomb's law and principle of superposition:

\vec R = \vec F_{13}+\vec F_{23} (1)

Please notice that particles with charges of <em>same</em> sign attract each other and particles with charges of <em>opposite</em> sign repeal each other.

\vec R = \frac{k\cdot q_{1}\cdot q_{3}}{r_{13}^{2}}\cdot \vec u_{13}  +\frac{k\cdot q_{2}\cdot q_{3}}{r_{23}^{2}}\cdot \vec u_{23} (2)

Where:

  • k - Electrostatic constant, in newton-square meters per square Coulomb.
  • q_{1}, q_{2}, q_{3} - Electric charges, in Coulombs.
  • r_{13}, r_{23} - Distances between particles, in meters.
  • \vec u_{13}, \vec u_{23} - Unit vectors, no unit.

If we know that k = 8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}}, q_{1} = 2\times 10^{-6}\,C, q_{2} = 2\times 10^{-6}\,C, q_{3} = 2\times 10^{-6}\,C, r_{13} =\frac{\sqrt{2}}{2}\,m, r_{23} =\frac{\sqrt{2}}{2}\,m, \vec u_{13} = \left(-\frac{\sqrt{2}}{2}, - \frac{\sqrt{2}}{2}  \right) and \vec u_{23} = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right), then the vector force on charge q_{3} is:

\vec R = \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right) + \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right)

\vec R = 0.072\cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right) + 0.072\cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right)\,[N]

\vec R = 0.072\cdot \left(0, -\sqrt{2}\right)\,[N]

And the magnitude of the <em>electrical</em> force on charge q_{3} (R), in newtons, due to the others is found by Pythagorean theorem:

R = 0.102\,N

The magnitude of <em>electrical</em> force on charge q_{3} due to the others is 0.102 newtons. \blacksquare

To learn more on Coulomb's law, we kindly invite to check this verified question: brainly.com/question/506926

8 0
2 years ago
An object on the moon feels lighter than the same object on earth. which statement explains this phenomenon?
natka813 [3]

Answer:

B

Explanation:

cause

7 0
3 years ago
Other questions:
  • Finish the sentence
    9·1 answer
  • A small charged bead has a mass of 1.0 g. It is held in a uniform electric field of magnitude E = 200,000 N/C, directed upward.
    11·1 answer
  • .What is the wavelength and frequency of a photon emitted by a transition of an electron from a n-2 orbit to a 1 orbit?
    12·1 answer
  • Why did scientists using classical, Newtonian physics have difficulty explaining the photoelectric effect?
    9·2 answers
  • The temperature of an ideal gas in a sealed 0.5-m3 rigid container is reduced from 350 K to 270 K. The final pressure of the gas
    8·1 answer
  • El límite de velocidad en una carretera internacional es de 80 mi/h. ¿Cuál es la equivalencia aproximada de esta velocidad en km
    11·1 answer
  • List at least three major differences between Pluto and the terrestrial planets.
    5·1 answer
  • What is the wavelength of the electromagnetic radiation needed to eject electrons from a metal?
    6·1 answer
  • Movement of the Earth's crust along plate boundaries produces _________.
    13·2 answers
  • (a) A narrow beam of light containing yellow (580 nm) and green (550 nm) wavelengths goes from polystyrene to air, striking the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!