1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arte-miy333 [17]
1 year ago
12

How is that velocity got like this? pls explain​

Physics
1 answer:
Yanka [14]1 year ago
5 0

Answer:

if a car is increasing it's acceleration uniformly in a unit time, the graph will be moving away from it's origin. that's how you get this kind of graph.

You might be interested in
The change in momentum of an object is equal to the ____________ that acts on it.
meriva

Answer : The change in momentum of an object is equal to the impulse that acts on it.

Explanation :

Change in momentum : The change in momentum of an object is the product of the mass and the change in velocity of an object.

The formula of change in momentum is,

\Delta p=m\times \Delta v

Impulse : An impulse of an object is the product of the force applied on an object and the change in time. Impulse is also equivalent to the change in momentum of  an object.

J=F\times \Delta t

Proof :

J=F\times \Delta t\\\\J=(m\times a)\times \Delta t\\\\J=m\times (a\times \Delta t)\\\\J=m\times \Delta v=\Delta p

Hence, the change in momentum of an object is equal to the impulse that acts on it.

3 0
2 years ago
Read 2 more answers
A spring does 5.0 J of work on a 0.10-kg ball bearing in a pinball machine. The ball's
lisov135 [29]

Answer:

10m/s

Explanation:

5 0
3 years ago
What is the current in a 160 V circuit if the resistance is 2
galben [10]

V= IR

160 = I × 2

80 A = I = current

8 0
2 years ago
Read 2 more answers
One end of a thin rod is attached to a pivot, about which it can rotate without friction. Air resistance is absent. The rod has
Mars2501 [29]

Answer:

6.86 m/s

Explanation:

This problem can be solved by doing the total energy balance, i.e:

initial (KE + PE)  = final (KE + PE). { KE = Kinetic Energy and PE = Potential Energy}

Since the rod comes to a halt at the topmost position, the KE final is 0. Therefore, all the KE initial is changed to PE, i.e, ΔKE = ΔPE.

Now, at the initial position (the rod hanging vertically down), the bottom-most end is given a velocity of v0. The initial angular velocity(ω) of the rod is given by ω = v/r , where v is the velocity of a particle on the rod and r is the distance of this particle from the axis.

Now, taking v = v0 and r = length of the rod(L), we get ω = v0/ 0.8 rad/s

The rotational KE of the rod is given by KE = 0.5Iω², where I is the moment of inertia of the rod about the axis of rotation and this is given by I = 1/3mL², where L is the length of the rod. Therefore, KE = 1/2ω²1/3mL² = 1/6ω²mL². Also, ω = v0/L, hence KE = 1/6m(v0)²

This KE is equal to the change in PE of the rod. Since the rod is uniform, the center of mass of the rod is at its center and is therefore at a distane of L/2 from the axis of rotation in the downward direction and at the final position, it is at a distance of L/2 in the upward direction. Hence ΔPE = mgL/2 + mgL/2 = mgL. (g = 9.8 m/s²)

Now, 1/6m(v0)² = mgL ⇒ v0 = \sqrt{6gL}

Hence, v0 = 6.86 m/s

4 0
3 years ago
An electron is accelerated within a particle accelerator using a 100 MV electric potential. The 100 MeV electron moves along an
Delicious77 [7]

Answer:

The length of the tube is 3.92 m.

Explanation:

Given that,

Electric potential = 100 MV

Length = 4 m

Energy = 100 MeV

We need to calculate the value of \gamma

Using formula of relativistic energy

E=m_{0}c^2(\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}-1)

Put the value into the formula

1.6\times10^{-15}= 9.1\times`10^{-31}\times9\times10^{16}(\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}-1)

(\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}-1)=\dfrac{1.6\times10^{-15}}{9.1\times10^{-31}\times9\times10^{16}}

Here, \gamma-1=(\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}-1)

\gamma-1=0.01953

\gamma=0.01953+1

\gamma=1.01953

We need to calculate the length

Using formula of length

L'=\dfrac{L}{\gamma}

Put the value into the formula

L'=\dfrac{4}{1.01953}

L'=3.92\ m

Hence, The length of the tube is 3.92 m.

8 0
3 years ago
Other questions:
  • Gravitational force is directly related to mass and inversely related to distance. So the bigger the masses the greater the forc
    10·1 answer
  • Which song form has alternating repetitions of a main theme which two or more contrasting sections?
    6·2 answers
  • A gry is an old English measure for length, defined as 1/10 of a line, where line is another old English measure for length, def
    6·1 answer
  • The vertical motion of mass A is defined by the relation x 5 10 sin 2t 1 15 cos 2t 1 100, where x and t are expressed in millime
    5·1 answer
  • An electron is carried from the positive terminal to the negative terminal of a 9 v battery. How much work is required in carryi
    6·1 answer
  • What is the mass of the dog that's running 10m/s that has a momentum of 250 m/s
    5·1 answer
  • At what rate must a cylindrical spaceship rotate if occupants are to experience simulated gravity of 0.50 gg? Assume the spacesh
    5·2 answers
  • 5. One of the attractions at Typhoon Lagoon, a water park in Florida, is a surf
    15·1 answer
  • A ball being dropped from a building
    9·1 answer
  • What is the kinetic energy of a ball with a mass of 9 kg and a velocity of 13 m/s ?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!