1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vfiekz [6]
3 years ago
13

You have a summer job at a company that developed systems to safely lower large loads down ramps. Your team is investigating a m

agnetic system by modeling it inthe laboratory. The safety system is a conducting bar that slides on two parallel conducting rails thatrun down the ramp (similar to the one in the previous problem). The bar is perpendicular to the railsand is in contact with them. At the bottom of the ramp, the two rails are connected together. The box slides down the rails through a uniform vertical magnetic field. The magnetic field is supposed to causethe bar to slide down the ramp at a constant velocity even when friction between the bar and the rails negligible.Before setting up the laboratory model, your task is to calculate the constant velocity of the bar (sliding down the ramp on rails in a vertical magnetic field) as a function of the mass of the bar, the strength ofthe magnetic field, the angle of the ramp from the horizontal, the length of the bar (which is the same asthe distance between the rails), and the resistance of the bar. Assume that all of the other conductors inthe system have a much smaller resistance than the bar.a) If the force due to the changing flux exactly cancells out the net force due to the combination of gravity and normal force, then the bare will cease to accelerate and instead move at a constant velocity. Please solve for this velocity algebraically.b)Write out the units for each of your variables and show (by cancellation and substitution) that the units for your veloctiy will be m/s on both left and right side of your equation.
Physics
1 answer:
Fofino [41]3 years ago
8 0

Answer:

Note that the emf induced is

emf = B d v cos (A)

---> v = emf / [B d cos (A)]

where

B = magnetic field

d = distance of two rails

v = constant speed

A = angle of rails with respect to the horizontal

Also, note that

I = emf/R

where R = resistance of the bar

Thus,

I = B d v cos (A) / R

Thus, the bar experiences a magnetic force of

F(B) = B I d = B^2 d^2 v cos (A) / R, horizontally, up the incline.

Thus, the component of this parallel to the incline is

F(B //) = F(B) cos(A) = B I d = B^2 d^2 v cos^2 (A) / R

As this is equal to the component of the weight parallel to the incline,

B^2 d^2 v cos^2 (A) / R = m g sin (A)

where m = the mass of the bar.

Solving for v,

v = [R m g sin (A) / B^2 d^2 cos^2 (A)]   [ANSWER, the constant speed, PART A]

******************************

v = [R m g sin (A) / B^2 d^2 cos^2 (A)]

Plugging in the units,

m/s = [ [ohm * kg * m/s^2] / [T^2 m^2] ]

Note that T = kg / (s * C), and ohm = J * s/C^2

Thus,

m/s = [ [J * s/C^2 * kg * m/s^2] / [(kg / (s * C))^2 m^2] ]

= [ [J * s/C^2 * kg * m/s^2] / [(kg^2 m^2) / (s^2 C^2)]

As J = kg*m^2/s^2, cancelling C^2,,

= [ [kg*m^2/s^2 * s * kg * m/s^2] / [(kg^2 m^2) / (s^2)]

Cancelling kg^2,

= [ [m^2/s^2 * s * m/s^2] / [(m^2) / (s^2)]

Cancelling m^2/s^2,

= [s * m/s^2]

Cancelling s,

=m/s   [DONE! WE SHOWED THE UNITS ARE CORRECT! ]

You might be interested in
You and your friend are going bungee jumping! You wait directly below them with a camera. When they leap from the bridge they be
Alex

Answer:

The amplitude  is  A =  90.2 \ m

Explanation:

From the question we are told that

    The frequency of when sound is approaching observer is   f = 392 Hz

     The frequency as the move away from observer  is  f_ a =  330 \ Hz

    The time between the pitch are t =  10 \ s

Here you are the observer and your friends are the source of the sound

The period is mathematically evaluated as

       T =  2 t

as it is the time to complete one oscillation which from on highest pitch to the next highest pitch

Now T can also be mathematically represented as

          T = \frac{2 \pi}{w}

Where  w is the angular velocity

=>   \frac{2 \pi}{w}  =  2 * 10

=>   w =  0.314 \ rad/sec

Now using Doppler Effect,

   The source of the sound is approaching the observer

The

          f = f_o (\frac{v}{v- wA} )

         392  = f_o (\frac{v}{v- wA} )

Where A is the amplitude

    So when the source is moving away from the observer

         f_a =  f_o (\frac{v}{v+ wA} )  

        330  =  f_o (\frac{v}{v+ wA} )  

Here  f_o is the fundamental frequency

Dividing the both equation  we have

           \frac{392}{330}  =  \frac{f_o(\frac{v}{v-wA} )}{f_o(\frac{v}{v+wA}}

           1.1878  = \frac{v+wA}{v-wA}

         1.1878 v -  1.1878 wA = v+wA

        1.1878 v = 2.1878 wA

=>     A =  \frac{(0.1878 * (330))}{(2.1878)* (0.314)}

         A =  90.2 \ m

7 0
3 years ago
How fast does a 500 Hz wave travel if its wavelength is 0.5 m?
olga_2 [115]

Answer:

250 m/s

Explanation:

4 0
2 years ago
Read 2 more answers
Grasses, shrubs and trees are called producers because they make ______a. water_____b. carbon dioxide_____c. minerals_____d. foo
LekaFEV [45]
B?
Carbon Dioxid? Or is is c?














4 0
3 years ago
Read 2 more answers
I need help with this please
Firdavs [7]
C is the answer to the question
6 0
3 years ago
A swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of 4.00 m/s, and
Svetlanka [38]

Answer:

a = 1.152s

b = 0.817 m

c = 7.29m/s

Explanation: let the following

From the first equation of linear motion

V = u+at..........1

parameters be represented as :

t = Time taken

v = Final velocity

a = Acceleration due to gravity = 9.8m/s²

u = Initial velocity = 4 m/s

s = Displacement

V = 0

Substitute the values into equation 1

0 = 4-9.8(t)

-4 = -9.8t

t = 4/9.8

t = 0.408s

From : s = ut+1/2at^2.........2

S = 4×0.408+0.5(-9.8)×0.408^2

S= 1.632-4.9(0.166)

S = 1.632-0.815

S = 0.817m

Her highest height above the board is 0.817 m

Total height she would fall is 0.817+1.90 = 2.717 m

From equation 2

s = ut+1/2at^2

2.717 m = 0t+0.5(9.8)t^2

2.717 m = 0+4.9t^2

2.717 m = 4.9t^2

2.717/4.9 = t^2

0.554 =t^2

t =√0.554

t = 0.744s

Hence, her feet were in the air for 0.744+0.408seconds

= 1.152s

Also recall from equation 1

V= u+at

V = 0+9.8(0.744)

V = 7.29m/s

Hence, the velocity when she hits the water is 7.29m/s

Finally,

a = 1.152s

b = 0.817 m

c = 7.29m/s

4 0
2 years ago
Other questions:
  • Will mark as brainliest if correct!!!!!!!!!!!!!!!!!!!!!!!!!
    9·2 answers
  • Is it possible that a 60kg boy riding a BMX bike could exert more pressure on a road surface than a 2500kg truck? Explain why.
    8·1 answer
  • What type of motor operates at a constant steady-state speed regardless of the load?
    8·1 answer
  • Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.650 µC charge and flies due west at a speed of
    8·1 answer
  • An athlete performing a long jump leaves the ground at a 27.0 degree angle and lands 7.80m away. What was the takeoff speed?
    15·1 answer
  • How much pressure is applied to the ground by a 78 kg man who standing on square stilts that measure 0.04 m on each edge ? Answe
    10·1 answer
  • A digital speedometer constantly reads zero mph. Technician A says the problem may be the vehicle speed sensor. Technician B say
    11·1 answer
  • Describe metallurgy. Check all that apply.
    8·1 answer
  • What does it ​mean​ to go 20 m/s?
    9·1 answer
  • 5. How many kilowatt-hours of energy would be used by a 40 W bulb that runs for 10 hours every
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!