Answer:
72
Explanation:
The displacement of an object can be found from the velocity of the object by integrating the expression for the velocity.
In this problem, the velocity of the sport car is given by the expression

In order to find the expression for the position of the car, we integrate this expression. We find:

where C is an arbitrary constant.
Here we want to find the displacement after 3 seconds. The position at t = 0 is

While the position after t = 3 s is

Therefore, the displacement of the car in 3 seconds is

Answer:
Yes
Explanation:
Any transparent surface in practical is neither a perfect absorber of electromagnetic waves neither a perfect reflector. Generally all the transparent surfaces reflect some amount of irradiation and the other parts are absorbed and transmitted.
<u>That is given by as relation:</u>

where:
absorptivity which is defined as the ratio of the absorbed radiation to the total irradiation
reflectivity is defined as the ratio of reflected radiation to the total irradiation
transmittivity is defined as the ratio of total transmitted radiation to the total irradiation
Conductor because it creates heat.
A good scientific question has certain characteristics. It should have some answers (real answers), should be testable (can be tested by someone through an experiment or measurements), leads to a hypothesis that is falsifiable (means it should generate a hypothesis that can be shown to fail), etc.
Answer:
Time take to fill the standing wave to the entire length of the string is 1.3 sec.
Explanation:
Given :
The length of the one end
, frequency of the wave
= 2.3 Hz, wavelength of the wave λ = 1 m.
Standing wave is the example of the transverse wave, standing wave doesn't transfer energy in a medium.
We know,
∴
λ
Where
speed of the standing wave.
also, ∴ 
where
time take to fill entire length of the string.
Compare above both equation,
⇒
sec

Therefore, the time taken to fill entire length 0f the string is 1.3 sec.