1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
2 years ago
5

You and a partner sit on the floor and stretch out a coiled spring to a length of 7.2 meters. You shake the coil so you

Physics
1 answer:
vekshin12 years ago
3 0

Answer:

Approximately 5.9\; {\rm m\cdot s^{-1}} (assuming that the partner is holding the other end of the coil stationary.)

Explanation:

In a standing wave, an antinode is a point that moves with maximal amplitude, while a node is a point that does not move at all. There is an antinode between every two adjacent nodes. Likewise, there is a node between every two adjacent antinodes.

The side of the spring that is being shaken moving with maximal amplitude. Hence, that point on this spring would also be an antinode. In contrast, the side of the spring that is held still (does not move at all) would be a node.

There would be a node between:

  • the antinode at the end of the spring that is being shaken, and
  • the antinode between the two ends of this spring.

Overall, the nodes and antinodes on this spring would be:

  • node at the end that is being held still,
  • antinode (as mentioned in the question),
  • node (inferred, not mentioned in the question), and
  • antinode at the end that is being shaken.

The distance between two adjacent nodes is equal to one-half (that is, (1/2)) the wavelength of the wave. The distance between a node and an adjacent antinode is one-quarter (that is, (1/4)) of the wavelength of the wave.

Thus, if the wavelength of the wave in this question is \lambda, the length of this spring would be:

\displaystyle \frac{1}{2}\, \lambda + \frac{1}{4}\, \lambda = \frac{3}{4}\, \lambda.

The question states that the length of this coiled spring is 7.2\; {\rm m}. In other words, (3/4) \, \lambda = 7.2\; {\rm m}. The wavelength of this wave would be (7.2\; {\rm m}) / (3/4) = 9.6\; {\rm m}.

The frequency f of this wave is the number of cycles in unit time:

\begin{aligned} f &= \frac{10}{16.3\; {\rm s}} \approx 0.613\; {\rm s^{-1}}\end{aligned}.

Hence, the speed v of this wave would be:

\begin{aligned} v &= \lambda\, f \\ &=9.6\; {\rm m} \times 0.613\; {\rm s^{-1}} \\ &\approx 5.9\; {\rm m \cdot s^{-1}}\end{aligned}.

You might be interested in
What foods are lipids found in, and what is their function in the body?
DENIUS [597]
Lipids are found in the sugars and starches, and are the main sources of energy in the body.

8 0
3 years ago
Read 2 more answers
According to the "Future Potential Source #2: Wind" article, what natural resource does wind power free up
melamori03 [73]
In short, the key value added of CDR data over census or survey approaches is the potential to access current and comprehensive evidence on population size, density, and dynamics, information that is fundamentally necessary for managing any humanitarian emergency or disease-related disaster but which is often
6 0
3 years ago
Which magnet will produce the strongest force of attraction when placed beneath this magnet?
Kruka [31]

Answer:

B

Explanation:

3 0
3 years ago
Read 2 more answers
A coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5×10−3m2. The solenoid is 0.50 m long and has 500
defon

To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.

This definition is described in the following equation as,

M = \frac{\mu_0 N_1 N_2A_1}{l_1}

Where,

\mu =permeability of free space

N_1 = Number of turns in solenoid 1

N_2 = Number of turns in solenoid 2

A_1= Cross sectional area of solenoid

l = Length of the solenoid

Part A )

Our values are given as,

\mu_0 = 4\pi *10^{-7}H/m

N_1 = 500

N_2 = 40

A = 7.5*10^{-4}m^2

l = 0.5m

Substituting,

M = \frac{\mu_0 N_1 N_2A_2}{l_1}

M = \frac{(4\pi *10^{-7})(500)(40)(7.5*10^{-4})}{0.5}

M = 3.77*10^{-4}H

PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.

8 0
3 years ago
According to the definition of mechanical work, pushing on a rock accomplishes no work unless there is
LekaFEV [45]
There must be movement in the same direction as the force put on the object. Hope this helps!
4 0
3 years ago
Read 2 more answers
Other questions:
  • "A bridge, constructed of 11 beams of equal length L and negligible mass, supports an object of mass M.
    15·2 answers
  • A 70.9-kg boy and a 43.2-kg girl, both wearing skates face each other at rest on a skating rink. The boy pushes the girl, sendin
    5·1 answer
  • What will an object weigh on the moon's surface if it weighs 190 n on earth's surface?
    8·1 answer
  • The rotation period for Venus is___days. (pls help!)<br> 365<br> 186<br> 512<br> 243
    11·2 answers
  • Two or more organs working together form
    9·1 answer
  • 1. A student mixes baking soda and vinegar in a glass. Do you think any new substances are being created in this mixture? If so,
    15·1 answer
  • If a 50 KG object is at a location 25,600 km from Earth's Center, what is the gravitational force exerted by the objects on Eart
    10·1 answer
  • If a long distance runner with a weight of 596.82 newtons does 35,674.7 joules of work during a portion of a race, what distance
    8·1 answer
  • Which would take longer to cool off by 50 degrees, 1 kg of Copper or 1 kg of liquid water?
    11·2 answers
  • It took a bulldozer 62,000 J of work to move a rock 30 m. It took 5 minutes. How much force did the bulldozer have to apply?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!