It's an electric motor that converts electric energy into Mechanical energy
Answer:
A
Explanation:
Actual output divided by the effective capacity. It is the ratio of output to effectiveness
Answer:
The work done is 205 kJ.
Explanation:
Hi there!
Work can be calculated using the following equation:
W = F · Δx
Where:
W = work
F = applied force
Δx = displacement
In this case, the force varies with the position, so we can divide the traveled distance in very small parts and calculate the work done over each part of the trajectory. Then, we have to sum all the works and we will obtain the work done from the initial position (xi) to the final position (xf). This is the same as saying:
W = ∫ F · dx
F = 3.6 N/m³ · x³ - 76 N
W = ∫ (3.6 x³ - 76)dx
W = 0.9 x⁴ - 76x
Evaluating from xi to xf:
W = 0.9 N/m³ (21.9 m)⁴ - 76 N · 21.9 m - 0.9 N/m³(5.41 m)⁴ + 76 N · 5.41 m
W = 205 kJ
<h2>
Answer:</h2>
(a) 10N
<h2>
Explanation:</h2>
The sketch of the two cases has been attached to this response.
<em>Case 1: The box is pushed by a horizontal force F making it to move with constant velocity.</em>
In this case, a frictional force
is opposing the movement of the box. As shown in the diagram, it can be deduced from Newton's law of motion that;
∑F = ma -------------------(i)
Where;
∑F = effective force acting on the object (box)
m = mass of the object
a = acceleration of the object
∑F = F - 
m = 50kg
a = 0 [At constant velocity, acceleration is zero]
<em>Substitute these values into equation (i) as follows;</em>
F -
= m x a
F -
= 50 x 0
F -
= 0
F =
-------------------(ii)
<em>Case 2: The box is pushed by a horizontal force 1.5F making it to move with a constant velocity of 0.1m/s²</em>
In this case, the same frictional force
is opposing the movement of the box.
∑F = 1.5F - 
m = 50kg
a = 0.1m/s²
<em>Substitute these values into equation (i) as follows;</em>
1.5F -
= m x a
1.5F -
= 50 x 0.1
1.5F -
= 5 ---------------------(iii)
<em>Substitute </em>
<em> = F from equation (ii) into equation (iii) as follows;</em>
1.5F - F = 5
0.5F = 5
F = 5 / 0.5
F = 10N
Therefore, the value of F is 10N
<em />