First you calculate how many moles there are in 2.0 grams of hydrogen (H2) atoms.
Hydrogen has a relative atomic mass (RAM) of 1 g/mol, but there are 2 hydrogen atoms: 1 x 2 = 2 g/mol
To work out how many moles there are,
use the formula: n(moles) = mass ÷ molar mass
n(moles) = 2 grams ÷ 2 g/mol = 1 mol
Then use Avogadro's Constant : 6.023 x 10^23
= 1 x 6.023 x 10^23
= 6.023 x 10^23
Final step is to multiply it by the number of atoms, in this case there are 2.
= 6.023 x 10^23 x 2
= 12.046 x 10^23
= 1.205 x 10^24
that ^ should be your final answer
have a great day :)
Answer:
hlo please help me to do my question
Just add up the molar masses of each element.
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Answer:
The molecular structure affects solubility mainly biased on its polarity or bonded ions.
Explanation:
Polar molecules will better interact with the water molecules and will dissolve easier. Nonpolar molecules can dissolve if they are small enough, however they don't interact well with the polar molecules. Bonded ions, such as NaCl split into a cation Na and an anion Cl which the positive charge on the Na will be attracted to the oxygen, and the negatively charged Cl will be attracted to the positive Hydrogen.
**Remember this rule, like dissolves like, meaning nonpolar dissolves nonpolar and polar dissolves polar.
I hope this helps!
Answer:
3.4 M
Explanation:
M = grams/molar mass = ans./volume(L)
M = 919/180 = ans./1.5