Answer:- 335 kcal of heat energy is produced.
Solution:- The balanced equation for the combustion of glucose in presence of oxygen to give carbon dioxide and water is:

From given info, 2803 kJ of heat is released bu the combustion of 1 mol of glucose. We need to calculate the energy produced when 3.00 moles of oxygen react with excess of glucose.
We could solve this using dimensional analysis as:

= 1401.5 kJ
Now, let's convert kJ to kcal.
We know that, 1kcal = 4.184kJ
So, 
= 335 kcal
Hence, 335 kcal of heat energy is produced by the use of 3.00 moles of oxygen gas.
Heavy rainfall because that’s a natural thing that happens and can never stop
As we move down the group, the metallic bond becomes more stable and the formation of forming covalent bond decreases down the group due to the large size of elements.
Covalent and metallic bonding leads to higher melting points. Due to a decrease in attractive forces from carbon to lead there is a drop in melting point.
Carbon forms large covalent molecules than silicon and hence has a higher melting point than silicon.
Similarly, Ge also forms a large number of covalent bonds and has a smaller size as compared to that of Sn. Hence melting point decreases from Ge to Sn.
The order will be C>Si>Ge>Pb>Sn.
To learn more about the covalent bond, visit: brainly.com/question/10777799
#SPJ4
Answer:
d. inversely proportional to the volume of its container.
Explanation:
Boyle's law states that at constant temperature and number of moles, the pressure of the gas is inversely proportional to the volume of the gas.
Thus, P ∝ T
P is the pressure
T is the temperature
For two gases at same temperature, the law can be written as:-

<u>Thus, according to the question, the answer is:- d. inversely proportional to the volume of its container.</u>