During endothermic phase change, the potential energy of the system always increases while the kinetic energy of the system remains constant. The potential energy of the reaction increases because energy is been added to the system from the external environment.
<u>Explanation</u>:
- Those are three distinct methods for demonstrating a specific energy condition of an object. They don't affect one another.
- "Potential Energy" is a relative term showing a release of possible energy to the environment. If we accept its pattern as the overall energy state of a compound, at that point, an endothermic phase change would infer an increase in "potential" as energy is being added to the compound by the system.
- A phase change will display an increase in the kinetic energy at whatever point the compound is transforming from a high density to a low dense phase. The kinetic energy will decrease at whatever point the compound is transforming from a less dense to high dense phase.
The buoyancy of an object is dictated by its density. So let us calculate for density, where:density = mass / volume
Calculate the volume first of a solid cube:volume = (6 cm)^3 = 216 cm^3 = 216 mL
Therefore density is:density = 270 g / 216 mLdensity = 1.25 g / mL
Therefore this object will float in the layer in which the density is more than 1.25 g / mL.
Answer:
5.06atm
Explanation:
Using the combined gas law equation;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (Litres)
V2 = final volume (Litres)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
P1 = 1.34 atm
P2 = ?
V1 = 5.48 L
V2 = 1.32 L
T1 = 61 °C = 61 + 273 = 334K
T2 = 31 °C = 31 + 273 = 304K
Using P1V1/T1 = P2V2/T2
1.34 × 5.48/334 = P2 × 1.32/304
7.34/334 = 1.32P2/304
Cross multiply
334 × 1.32P2 = 304 × 7.34
440.88P2 = 2231.36
P2 = 2231.36/440.88
P2 = 5.06
The final pressure is 5.06atm
Answer:
1
Explanation:
if 33 the answer would be 92 but u think then 92 32 1
True, cracking distillation is one process used to break hydrocarbons into smaller and more useful parts. This is achieved by using high temperatures and pressures with a catalyst. The most common catalyst used are the zeolites.