Answer:
d
Step-by-step explanation:
the reasoning for this is because you count all the 2's and the little number in the corner and then you can't leave the 7 so you put the x7 for that reason
Answer:
11.1 years
Step-by-step explanation:
The formula for interest compounding continuously is:

Where A(t) is the amount after the compounding, P is the initial deposit, r is the interest rate in decimal form, and t is the time in years. Filling in what we have looks like this:

We will simplify this first a bit by dividing 2000 by 1150 to get

To get that t out the exponential position it is currently in we have to take the natural log of both sides. Since a natural log has a base of e, taking the natual log of e cancels both of them out. They "undo" each other, for lack of a better way to explain it. That leaves us with
ln(1.739130435)=.05t
Taking the natural log of that decimal on our calculator gives us
.5533852383=.05t
Now divide both sides by .05 to get t = 11.06770477 which rounds to 11.1 years.
Answer:
YEET
Step-by-step explanation:
Whatever y is multiply it my 12, because there are 12 months in a year.
Many numbers, when multiplied by

, are less than

. We can find an inequality for numbers

that are sufficient.
Clearly,

is the desired inequality. We divide by 7 to find that

determines working numbers.
<em><u>An inequality that shows the distance Johnathan could of ran any day this week is:</u></em>

<em><u>Solution:</u></em>
Let "x" be the distance Johnathan can run any day of this week
Given that,
Johnathan ran 5 days this week. The most he ran in one day was 3.5 miles
Therefore,
Number of days ran = 5
The most he ran in 1 day = 3.5 miles
Thus, the maximum distance he ran in a week is given as:

The maximum distance he ran in a week is 17.5 miles
If we let x be the distance he can run any day of this week then, we get a inequality as:

If we let y be the total distance he can travel in a week then, we may express it as,
