The density of the rectangular block in g/mL is 7.0.
<u>Given the following data:</u>
- Mass of block = 22.8 gra1.94 kg
- Length of block = 3.21 cm
- Height of block = 1.84 in.
To find the density of the block in g/mL:
First of all, we would determine the volume of the rectangular block by using the following formula:
× ×
<u>Conversion:</u>
1 in = 2.54 cm
5.83 in = X cm
Cross-multiplying, we have:
× ×
Volume = 277.16 cubic centimeters.
<u>Note</u>: Milliliter (mL) is the same as cubic centimeters.
1000 grams = 1 kg
Y grams = 1.94 kg
Cross-multiplying, we have:
Y = 1940 grams
Now, we can find the density:
<em>Density </em><em>= 7</em><em>.0 g/mL</em>
Therefore, the density of the rectangular block in g/mL is 7.0.
Read more: brainly.com/question/18320053
Altitude, If this helped please 5 star me
Answer:
0.03atm
Explanation:
Given parameters:
Total pressure = 780torr
Partial pressure of water vapor = 1.0atm
Unknown:
Partial pressure of radon = ?
Solution:
A sound knowledge of Dalton's law of partial pressure will help solve this problem.
The law states that "the total pressure of a mixture of gases is equal to the sum of the partial pressures of the constituent gases".
Mathematically;
P = P + P + P
Since the total pressure is 780torr, convert this to atm;
760torr = 1 atm
780torr = atm = 1.03atm
For this problem;
Total pressure = Partial pressure of radon + Partial pressure of water vapor
1.03 = Partial pressure of radon + 1.0
Partial pressure of radon = 1.03 - 1.00 = 0.03atm
Molar volume is when 1 mol of any gas occupies 22.4 L at STP.
Methyl ether has a mass of 8.12 g,
Volume occupied - 3.96 L
If 22.4 L occupied by 1 mol of gas
Then 3.96 L occupied by 1/22.4 x 3.96 = 0.176 mol of gas
The mass of 0.176 mol = 8.12 g
Molar mass is mass of 1 mol
Therefore mass of 1 mol = 8.12/0.176 = 46.1
Molecular weight is 46.1 g/mol