Answer:
predation
Explanation:
Predation An interaction in which one organism kills another for food. Prey An organism that is killed and eaten by another organism.
Answer:
No, CCl₄ is 4 covalent C-Cl single bonds with a Tetrahedral geometry.
Explanation:l
For resonance structures to exist the molecule must have alternating single-double bonds. H₂C = CH - CH₃ <=> H₃C - CH = CH₂ resents a simple compound with a resonance structure system. This means that the π-bond electrons are distributed across all carbons in the molecular backbone. I would recommend internet searching for Danial Weeks 'Pushing Electrons' for a comprehensive review of molecular resonance structures. It is a brief, but easy to follow treatment of simple to complex structures containing resonance systems.
Hope this helps. Doc :-)
Answer:
146.3g NaCl (mol NaCl/58.44g NaCl) = 2.50 mol NaCl
1.5M NaCl = 1.5 mol NaCl / 1 L = 2.5 mol NaCl / x L, solve for x
x L = 2.5 mol NaCl / 1.5 mol NaCl = 1.66 L
It gives the answer and all the working.
To put it another way:
Dividing the amount required by the molar mass
we quickly see that 2.5 moles are required.
One litre of 1.5 molar solution gives 1.5 moles
we need a further mole, which is 2/3 of 1.5 so 2/3 of a litre.
Answer:
1.0 *10^(-4) mol
Explanation:
For gases:
n1/n2 = V1/V2
n1/3.8*10^(-4) mol = 230 mL/ 860 mL
n1 = 3.8*10^(-4)*230/860 = 1.0 *10^(-4) mol
Answer: -
6
Explanation: -
The given unbalanced chemical equation is As + NaOH -- > Na3AsO3 + H2
We see there 3 sodium on the right side from Na3AsO3.
But there are only 1 sodium on the left from NaOH.
So we multiply NaOH by 3.
As + 3 NaOH -- > Na3AsO3 + H2
Now we see the number of Hydrogen on the left is 3.
But the number of hydrogens is 2 on the left.
So, we multiply to get both sides 6 hydrogen.
As + 6NaOH -- > Na3AsO3 + 3 H2
Rebalancing for Na,
As + 6NaOH -- > 2Na3AsO3 + 3 H2.
Finally balancing As,
2 As + 6 NaOH -- > 2Na3AsO3 + 3H2
The coefficient of the NaOH molecule in the balanced reaction is thus 6