Fossil fuel combustion increases the acidity of rain because the sulfur dioxide is produced.
Because of fuel combustion, sulfur dioxide goes up into the atmosphere as the hot gases rise, than it reacts with water and oxygen in the air and form sulfuric <span>acid:
</span>Balanced chemical reaction: SO₂(g) + 2O₂(g) + 2H₂O → 2H₂SO₄.
Explanation:
According to the ideal gas equation, PV = nRT.
where, P = pressure, V = volume
n = no. of moles, R = gas constant
T = temperature
Also, density is equal to mass divided by volume. And, no. of moles equals mass divided by molar mass.
Therefore, then formula for ideal gas could also be as follows.
P = 
or, P = 
Since, density is given as 0.789 g/ml which is also equal to 789 g/L (as 1000 mL = 1 L). Hence, putting the given values into the above formula as follows.
P = 
= 
= 525 atm
As two-liter soft drink bottle can withstand a pressure of 5 atm and the value of calculated pressure is 525 atm which is much greater than 5 atm.
Therefore, the soft drink bottle will obviously explode.
gene therapy is the answer
Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps