Answer: 4.18925 kJ heat is needed to convert 25.0 g of solid ethanol at -135 °C to liquid ethanol at -50°C.
Explanation:
Temperature of Solid
Melting temperature of Solid 
Temperature of liquid 
Specific heats of solid ethanol = 0.97 J/gK
Specific heats of liquid ethanol = 2.3 J/gK
Heat required to melt the the 25 g solid
at 159 K
= 159 K - 138 K = 21 K

Heat required to melt and raise the temperature of
upto 223 K
= 223 K - 159 K = 64 K

Total heat to convert solid ethanol to liquid ethanol at given temperature :
(1kJ=1000J)
Hence, 4.18925 kJ of heat will be required to convert 25.0 g of solid ethanol at -135 °C to liquid ethanol at -50°C.
Answer:
220mol.
Explanation:
Water is H2O. Hydrogen gas is H2. Oxygen gas is O2. You have 220mol of O and 460mol of H. O is the limiting reactant. The ratio O:H2O is 1:1. 220*1=220
Use Charles' Law: V1/T1 = V2/T2. We assume the pressure and mass of the helium is constant. The units for temperature must be in Kelvin to use this equation (x °C = x + 273.15 K).
We want to solve for the new volume after the temperature is increased from 25 °C (298.15 K) to 55 °C (328.15 K). Since the volume and temperature of a gas at a constant pressure are directly proportional to each other, we should expect the new volume of the balloon to be greater than the initial 45 L.
Rearranging Charles' Law to solve for V2, we get V2 = V1T2/T1.
(45 L)(328.15 K)/(298.15 K) = 49.5 ≈ 50 L (if we're considering sig figs).