To determine the fraction of carbon in morphine, we need to know the chemical formula of morphine. From my readings, the chemical formula would be <span>C17H19NO<span>3. We assume we have 1 g of this substance. Using the molar mass, we can calculate for the moles of morphine. Then, from the formula we relate the amount of carbon in every mole of morphine. Lastly, we multiply the molar mass of carbon to obtain the mass of carbon. We calculate as follows:
1 g </span></span> <span>C17H19NO<span>3 ( 1 mol / 285.34 g ) ( 17 mol C / 1 mol </span></span> <span>C17H19NO3</span>) ( 12.01 g C / 1 mol C) = 0.7155 g C
Fraction of carbon = 0.7155 g C / 1 g <span>C17H19NO<span>3 = 0.7155</span></span>
Answer:
12.29 M
Explanation:
- The reaction that takes place is:
H₂SO₄ + 2NaOH → 2Na⁺ + SO₄⁻² + 2H₂O
- Now let's calculate the <u>moles of H₂SO₄ that were titrated</u>:
= 0.01229 mol H₂SO₄.
- Thus, the <u>concentration of the diluted solution is</u>:
0.01229 mol H₂SO₄ / 0.010 L = 1.229 M
- Finally, the <u>concentration of the original acid solution is:</u>
= 12.29 M
Answer:
Its probably none of those.
Explanation:
White dwarf temperatures can exceed 100,000 Kelvin according to NASA (that's about 179,500 degrees Fahrenheit). Despite these sweltering temperatures, white dwarfs have a low luminosity as they're so small in size according to NMSU.
B the atomic number is 20 and then you subtract atomic mass to find the neutrons
Organism: Apple
All cells from the apple come from cell division occurring from the apple in order for it to grow.
An apple has multiple cells
The small living part in an apple is a cell thus showing that cells are the basic living unit.