Answer:
Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals.
Sucrose is stored in dry and closed container, sealed properly.
Explanation:
- Sucrose is nothing but the table sugar which we use daily in our life.
- Sucrose is formed by the combination of fructose and glucose so, it called a disaccharide because two monosaccharides are converted to form sucrose.
- It is a hygroscopic substance. The hygroscopic substance is which is easily vulnerable to water absorption. They tend to absorb water if they are being exposed to humid places.
- Hence, it should be kept in a dry and close container, sealed properly.
Answer:
c. CH4 < NH3 because the NH bond is more polar than the CH bond.
Explanation:
Actually, the electronegativity difference between carbon and hydrogen is just about 0.4. This meager difference in electronegativity corresponds to a nonpolar bond between the two atoms.
However, the electronegativity difference between nitrogen and hydrogen is about 0.9. This larger electronegativity difference corresponds to the existence of a polar covalent bond between the two atoms.
Hence the N-H bond is significantly polar unlike the C-H bond. This implies that CH4 molecules are only held together by weak dispersion forces while NH3 molecules are held together by stronger dipole-dipole interactions and hydrogen bonds.
<h3>
Answer:</h3>
2000 atoms
<h3>
Explanation:</h3>
We are given the following;
Initial number of atoms of radium-226 as 8000 atoms
Time taken for the decay 3200 years
We are required to determine the number of atoms that will remain after 3200 years.
We need to know the half life of Radium
- Half life is the time taken by a radio active material to decay by half of its initial amount.
- Half life of Radium-226 is 1600 years
- Therefore, using the formula;
Remaining amount = Original amount × 0.5^n
where n is the number of half lives
n = 3200 years ÷ 1600 years
= 2
Therefore;
Remaining amount = 8000 atoms × 0.5^2
= 8000 × 0.25
= 2000 atoms
Thus, the number of radium-226 that will remain after 3200 years is 2000 atoms.