Work Done = force x displacement. So in this case the 15N is the force (because weight is a force) and 0.60m is the displacement. Therefore 15 x 0.6 = 9 Joules of work done (btw, work done can also be referred to as energy transferred)
Answer:
pOH of resulting solution is 0.086
Explanation:
KOH and CsOH are monoacidic strong base
Number of moles of
in 375 mL of 0.88 M of KOH =
= 0.33 moles
Number of moles of
in 496 mL of 0.76 M of CsOH =
= 0.38 moles
Total volume of mixture = (375 + 496) mL = 871 mL
Total number of moles of
in mixture = (0.33 + 0.38) moles = 0.71 moles
So, concentration of
in mixture,
= 
Hence, ![pOH=-log[OH^{-}]=-log(0.82)=0.086](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E%7B-%7D%5D%3D-log%280.82%29%3D0.086)
Answer:
The mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
Explanation:
We are given that
Aqueous solution that contains 22.9% NaOH by mass means
22.9 g NaOH in 100 g solution.
Mass of NaOH(WB)=22.9 g
Mass of water =100-22.9=77.1
Na=23
O=16
H=1.01
Molar mass of NaOH(MB)=23+16+1.01=40.01
Number of moles =
Using the formula
Number of moles of NaOH

Molar mass of water=16+2(1.01)=18.02g
Number of moles of water

Now, mole fraction of NaOH
=

=0.882
Hence, the mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
Answer:
4Fe + 3O2 + 6H2O → 4Fe(OH)3
Explanation:
The chemical formula for rust is Fe2O3 and is commonly known as ferric oxide or iron oxide. The final product is a series of chemical reactions simplified below as- The rusting of the iron formula is simply 4Fe + 3O2 + 6H2O → 4Fe(OH)3. The rusting process requires both the elements of oxygen and water.