Answer:
12.99
Explanation:
<em>A chemist dissolves 716. mg of pure potassium hydroxide in enough water to make up 130. mL of solution. Calculate the pH of the solution. (The temperature of the solution is 25 °C.) Be sure your answer has the correct number of significant digits.</em>
Step 1: Given data
- Mass of KOH: 716. mg (0.716 g)
- Volume of the solution: 130. mL (0.130 L)
Step 2: Calculate the moles corresponding to 0.716 g of KOH
The molar mass of KOH is 56.11 g/mol.
0.716 g × 1 mol/56.11 g = 0.0128 mol
Step 3: Calculate the molar concentration of KOH
[KOH] = 0.0128 mol/0.130 L = 0.0985 M
Step 4: Write the ionization reaction of KOH
KOH(aq) ⇒ K⁺(aq) + OH⁻(aq)
The molar ratio of KOH to OH⁻is 1:1. Then, [OH⁻] = 0.0985 M
Step 5: Calculate the pOH
We will use the following expression.
pOH = -log [OH⁻] = -log 0.0985 = 1.01
Step 6: Calculate the pH
We will use the following expression.
pH + pOH = 14
pH = 14 - pOH = 14 -1.01 = 12.99
Q=m°C<span>ΔT
=(500g) x (1 cal/g.</span>°C) x (48°C-21°C) = 13500 cal
13500 cal / 1000 = 13.5 kcal
<span>"What is the caloric value (kcal/g) of the french fries?"
13.5 kcal/ 2.5 g = 5.4 kcal/g</span>
Answer:
Here's what I get.
Explanation:
At the end of the reaction you will have a solution of the alcohol in THF.
The microdistillation procedure will vary, depending on the specific apparatus you are using, but here is a typical procedure.
- Transfer the solution to a conical vial.
- Add a boiling stone.
- Attach a Hickman head (shown below) and condenser.
- Place the assembly in in the appropriate hole of an aluminium block on top of a hotplate stirrer.
- Begin stirring and heating at a low level so the THF (bp 63 °C) can distill slowly.
- Use a Pasteur pipet to withdraw the THF as needed.
- When all the THF has been removed, raise the temperature of the Al block and distill the alcohol (bp 143 °C).
The answer is
b) electron