<h3>
Answer:</h3>
3.0 × 10²³ molecules AgNO₃
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Writing Compounds
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
85 g AgNO₃ (silver nitrate)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of Ag - 107.87 g/mol
[PT] Molar Mass of N - 14.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of AgNO₃ - 107.87 + 14.01 + 3(16.00) = 169.88 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
3.01313 × 10²³ molecules AgNO₃ ≈ 3.0 × 10²³ molecules AgNO₃
Sodium fluoride- to brush teeth
Citric acid- orange juice for breakfast
Sodium hydroxide- cleaning agent
Answer:
If matter is heated and thus its temperature rises more and more, it can be seen that the particles contained in it move ever faster – be it the relatively free movement of the particles in gases or the oscillation around a rest position in solids. The temperature of a substance can therefore be regarded as a measure of the velocity of the particles it contains. With a higher temperature and thus higher particle
Explanation:
Answer:
positive H and negative S
Explanation:
For a reaction to be spontaneous, the absolute best combination is a negative Delta H and a positive Delta S. When they are both positive, the reaction is only spontaneous at higher temperatures. When they are both negative, the reaction is only spontaneous at lower temperatures. and again if a catalyst is added to the reaction, the activation energy is lowered because a lower-energy transition state is formed. The catalyst does not affect the energy of the reactants or products (and thus does not affect ΔG).
So from these discussions
Ea does not affect G value at all (whether +Ea or -Ea).
And for product to be formed the reaction should be spontaneous, where H is negative and S positive else the reaction will yield low product.
Answer:
<h2>0.059 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>0.059 moles</h3>
Hope this helps you