Answer: 22.5 percent of incoming solar radiation goes directly to the surface of the Earth and is absorbed.
Explanation: Transfer of radiation through a planet's atmosphere. A planet and its atmosphere, in our solar system, can radiate back to space only as much energy as it absorbs from incoming solar radiation.
Answer:
3 × 10⁴ kJ
Explanation:
Step 1: Write the balanced thermochemical equation
C₃H₈(g) + 5 O₂(g) ⟶ 3 CO₂(g) + 4 H₂O(g) ΔH = -2220 kJ
Step 2: Calculate the moles corresponding to 865.9 g of H₂O
The molar mass of H₂O is 18.02 g/mol.
865.9 g × 1 mol/18.02 g = 48.05 mol
Step 3: Calculate the heat produced when 48.05 moles of H₂O are produced
According to the thermochemical equation, 2220 kJ of heat are evolved when 4 moles of H₂O are produced.
48.05 mol × 2220 kJ/4 mol = 2.667 × 10⁴ kJ ≈ 3 × 10⁴ kJ
Answer:
A. Condensation
B. Evaporation
Explanation:
Condensation releases energy when water vapor condenses to form water droplets. Evaporation absorbs energy whenever it changes from liquid to gas, the heat from the sun heats the water up and absorbs energy.
Molarity is the ratio of the moles and the volume. The mass of 2.6 M sodium phosphate solution is 2131.22 gms.
<h3>What is mass?</h3>
Mass is the product of the moles and the molar mass of the substance. It is given as,
Mass = Moles × Molar mass
The moles from molar concentration is used to calculate mass as:
Mass = Molarity × volume × molar mass
= 2.6 × 5.0 × 163.94
= 2131.22 gms
Therefore, 2131.22 gms is the mass of sodium phosphate.
Learn more about mass here:
brainly.com/question/9829994
#SPJ1
The average atomic mass of iron : 55.85 amu
<h3>Further explanation
</h3>
The elements in nature have several types of isotopes
Isotopes are atoms whose no-atom has the same number of protons while still having a different number of neutrons.
An atomic mass unit = amu is a r<em>elative atomic mass of 1/12 the mass of an atom of carbon-12.
</em>
The 'amu' unit has now been replaced with a unit of 'u' only
Atomic mass is the average atomic mass of all its isotopes
atomic mass X = mass isotope 1 . % + mass isotope 2.%
...
The average atomic mass of iron
