Answer:
NaCl has a smaller lattice energy compared to CaO
Explanation:
We have remember that lattice energy increases as the size of the ions in the ionic solid decreases. According to Oxford dictionary; lattice energy is "a measure of the energy contained in the crystal lattice of a compound, equal to the energy that would be released if the component ions were brought together from infinity."
We know that the larger the magnitude of charge on a cation the smaller in size the cation is and the size of anions increase from left to right in the periodic table. Hence Ca^2+<Na^+ and O^2- < Cl^-. Therefore the lattice energy of CaO is greater than that of NaCl.
Answer : The correct option is, (e) eg = trigonal planar, mg = trigonal planar
Explanation :
Formula used :
![\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5BV%2BN-C%2BA%5D)
where,
V = number of valence electrons present in central atom
N = number of monovalent atoms bonded to central atom
C = charge of cation
A = charge of anion
The given molecule is, 
![\text{Number of electron pair}=\frac{1}{2}\times [4+3-1]=3](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5B4%2B3-1%5D%3D3)
That means,
Bond pair = 3
Lone pair = 0
The number of electron pair are 3 that means the hybridization will be
and the electronic geometry of the molecule will be trigonal planar.
Hence, the electron geometry (eg) and molecular geometry (mg) of
is, trigonal planar and trigonal planar respectively.
The characteristics flame test color of metal ions are because of the atomic emission spectra.
When an atom absorbs a particular wavelength radiation, the electrons within it, move from lower energy level to the higher level of energy. Such a procedure is called absorption. When this stimulated electron to come back to its ground state, it loses energy in particular color on the basis of the frequency of the absorbed radiation. Such a procedure is called emission.
As an atom exhibit, distinct levels of energy, the level close to the nucleus possess less energy in comparison to the level, which is far from the nucleus. So, electrons move from lower energy level to the higher level by attaining particular energy, and after excitation, it comes back from high energy level to a low energy level with the emission of light.
According to Planck's concept, there is a specific difference of energy between the two energy level, so such energy difference is quantized. Only those radiation are absorbed, which are equivalent to the difference of energy between the two levels.
Answer:
32000atm
Explanation:
Using Boyle's law equation;
P1V1 = P2V2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (
V2 = final volume (L)
According to the question below:
P1 = 160.0 atm
P2 = 3.0 atm
V1 = 600L
V2 = ?
Using P1V1 = P2V2
160 × 600 = 3 × V2
96000 = 3V2
V2 = 96000/3
V2 = 32000atm