Answer:
Option b. 22 g of He will have the greatest volume at STP
Explanation:
In order to determine the volume, we apply the Ideal Gases Law equation:
P . V = n . R . T
V = n . R . T / P
R, T and P are the same in all the situation we must define n (number of moles).
The one that has the greatest number of moles will have the greatest volume at STP
22 g of Ne . 1mol / 20.1 g = 1.09 moles of Ne
22g of He . 1mol / 4 g = 5.5 moles of He
22 g of O₂ . 1mol / 32g = 0.68 moles of O₂
22 g of Cl₂ . 1mol / 70.9 g = 0.31 moles of Cl₂
The balanced equation for the reaction between NaOH and aspirin is as follows;
NaOH + C₉H₈O₄ --> C₉H₇O₄Na + H₂O
stoichiometry of NaOH to C₉H₈O₄ is 1:1
The number of NaOH moles reacted - 0.1002 M / 1000 mL/L x 10.00 mL
Number of NaOH moles - 0.001002 mol
Therefore number of moles of aspirin - 0.001002 mol
Mass of aspirin reacted - 0.001002 mol x 180.2 g/mol = 0.18 g
However the mass of the aspirin sample is 0.132 g but 0.18 g of aspirin has reacted, therefore this question is not correct.
Answer:-
Electrons or Protons
Explanation:-
Atomic number (Z) is defined as:
>>“The total number of protons in the nucleus of an atom is called atomic number”. All atoms of an element have the same number of protons and electrons.
>>“The total number of protons in the nucleus or electrons revolving around the nucleus of an atom”.
Example:
For instance, Hydrogen has the Atomic number(Z) 1.
Helium has the atomic number 2.
Oxygen has the atomic number 8.
| Note | Atomic number is represented by “Z”. And some ppl don’t consider the 2nd definition it’s upto u to do both or the standard one.
What term and what definition..
Answer:
D. Its temperature will remain 100 C until all the vapours condenses
Explanation:
Heat absorbed by a substance to change the state of matter is known as latent heat. This heat is utilized to break the bonds between atoms of the substance so that they can undergo phase change.
So, when water boils at 100 degree Celsius then temperature will remain constant unless and until all the water changes into vapor. As it is the latent heat that breaks the bonds between hydrogen and oxygen atoms of water so that liquid state can change into gaseous state.
Since latent heat is a hidden heat, that is why, it does not get reflected and there is no change in temperature due to it.
Thus, we can conclude that it is true that temperature will remain at 100°C until all the vapor condenses for a sample of water vapor at 101°C as it cools.