Answer:
69.7% is percent yield
Explanation:
Based on the reaction:
3Ca(NO3)2(aq) + 2Na3PO4(aq) → Ca3(PO4)2(s) + 6NaNO3(aq)
2 moles of Na3PO4 react producing 6 moles of NaNO3.
As 24.2 moles of Na3PO4 react, theoretical moles of NaNO3 produced are:
24.2 moles Na3PO4 * (6 moles NaNO3 / 2 moles Na3PO4) =
72.6 moles of NaNO3
As there are produced 50.6 moles of NaNO3, percent yield is:
50.6 moles NaNO3 / 72.6 moles NaNO3 =
<h3>69.7% is percent yield</h3>
Hi the answer is 1/6, because 1/6 of 3,600 is 600, so it's 1/6. Have a great day!
Answer:
1. C- Three.
2. A- Methionine
3. D- Translocation.
4. C- OH.
5. A - 5'
6. A - 3' carbon
7. A. adenine and guanine
Explanation:
1. A codon is a group of three nucleotide sequence that encodes or specifies an amino acid. This means that, during translation (second stage of gene expression), when a CODON is read, an amino acid is added to the growing peptide chain.
2. The codon that initiates the translation process is called a start codon. It has a sequence: AUG and it specifies Methionine amino acid. Hence, during translation where a tRNA binds to the mRNA codon to read it and add its corresponding amino acid, a tRNA with a complementary sequence of AUG (start codon) binds to it and carries Methionine amino acid.
3. Translocation is a process during translation whereby the mRNA-tRNA moeity moves forward in the ribosome to allow another codon to move into the vacant site for translation process to continue.
4. The sugar component of a nucelotide that makes up the nucleic acid (DNA or RNA) i.e. ribose or deoxyribose, contains an hydroxyll functional group (-OH).
5. A nucleotide consists of a pentose (five carbon) sugar, phosphate group and a nitrogenous base. The phosphate group (PO43-) is attached to the 5' carbon of the sugar molecule.
6. The free hydroxyll group (-OH) of the five carbon sugar molecule in DNA is attached to its 3' carbon.
7. Nitrogenous bases are the third component of a nucleotide, the other two being pentose sugar and phosphate group. The nitrogenous bases are four viz: Adenine, Guanine, Cytosine, and Thymine. These bases are classified into Purines and Pyrimidines based on the similarity in their structure. Adenine (A) and Guanine (G) are Purines because they possess have two carbon-nitrogen rings, as opposed to one possessed by Pyrimidines (Thymine and Cytosine).
is it decomp single replacement double replacement