Answer:

Explanation:
The vector that point from point P1 to point P2 its found simply by taking the vector at which point P2 its located and subtracting the vector at which point P1 its located:

So:



I think the puck pushes the stick backwards
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s
Answer:
The magnitude of the resultant decreases from A+B to A-B
Explanation:
The magnitude of the resultant of two vectors is given by

where
A is the magnitude of the first vector
B is the magnitude of the second vector
is the angle between the directions of the two vectors
In the formula, A and B are constant, so the behaviour depends only on the function
. The value of
are:
- 1 (maximum) when the angle is 0, so the magnitude of the resultant in this case is

- then it decreases, until it becomes 0 when the angle is 90 degrees, where the magnitude of the resultant is

- then it becomes negative, and continues to decrease, until it reaches a value of -1 when the angle is 180 degrees, and the magnitude of the resultant is

48 meters.
12 m/s and 4 seconds, so 4*12=48.