Answer:
The mass is 1.4701 grams and the moles is 0.01.
Explanation:
Based on the given question, the volume of the solution is 100 ml or 0.1 L and the molarity of the solution is 0.100 M. The moles of the solute (in the given case calcium chloride dihydride (CaCl2. H2O) can be determined by using the formula,
Molarity = moles of solute/volume of solution in liters
Now putting the values we get,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
The mass of CaCl2.2H2O can be determined by using the formula,
Moles = mass/molar mass
The molar mass of CaCl2.2H2O is 147.01 gram per mole. Now putting the values we get,
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.
In the combustion process using excess oxygen, each mole of methane results to 1 mole of co2 while ethane produces 2 moles of Co2. Under same conditions, these can be translated to volume. Hence the total volume absorbed is 10 cm3 + 20 cm3 = 30 cm3.
Answer:
Aluminium.
Explanation:
The above electronic configuration can be written in a simplified form as shown below:
1s² 2s²2p⁶ 3s²3p¹
Next, we shall determine the number of electrons in the atom of the element as follow:
Number electron = 2 + 2 + 6 + 2 + 1
Number of electron = 13
Next, we shall determine the number of protons.
Since the element is in its neutral state,
The number of electrons and protons are equal i.e
Proton = Electron
Number of electron = 13
Proton = Electron = 13
Proton = 13
Next, we shall determine the atomic number of the element.
The atomic number of an element is simply the number of protons in the atom of the element i.e
Atomic number = proton number
Proton = 13
Atomic number = 13
Comparing the atomic number of the element with those in the periodic table, the element with the above electronic configuration is aluminium since no two elements have the same atomic number.